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Abstract

A major drawback of the Standard Heston model is that its implied volatility
surface does not produce a steep enough smile when looking at short matu-
rities. For that reason, we consider the Stationary Heston model where the
deterministic initial condition of the volatility process is replaced by its in-
variant measure. We show, based on calibrated parameters, that this model
produces a steeper smile for short maturities than the original Heston model.
We also present numerical procedure based on Product Recursive Quantization
for the pricing of exotic options (Bermudan and Barrier options).

Introduction

Originally introduced by Heston in [Hes93], the Heston model is a stochastic volatility model used
in quantitative finance to model the joint dynamics of a stock, denoted pSpxqt qtě0, and its volatility,
denoted pvxt qtě0 where vx0 “ x ą 0 stands for the initial volatility at time t “ 0. Historically,
the initial condition of the volatility x is considered as deterministic and is calibrated to market
data like the other parameters of the model. This model received an important attention among
practitioners for two reasons: first, it is a stochastic volatility model, hence it introduces smile
in the implied volatility surface as observed in the market, which is not the case of models
with constant volatility, and second, in its original form, we have access to a semi closed-form
formula for the characteristic function which allows us to price European options (Call & Put)
almost instantaneously using the Fast Fourier approach (Carr & Madan in [CM99]). Yet, a
complaint often heard about the Heston model is that it fails to fit the implied volatility surface
for short maturities because the model cannot produce a steep-enough smile for those maturities
(see [Gat11]).

In [PP09] devoted to the computation by Langevin Monte Carlo simulation of stationary
regime of ergodic diffusion, the authors introduce as an example what they called the Stationary
Heston model: noting that the volatility process is ergodic with the Gamma distribution as
unique invariant distribution ν “ γpα, βq, where α and β depend on the structure parameters
of the volatility process, they assume the volatility evolves under this stationary regime rather
than starting at time 0 from a deterministic value. The couple asset-volatility in this Stationary
Heston model will be denoted pSpνqt , vνt qtě0. Considering this avatar of Heston model is justified
(on simulated data) by more realistic implied volatility surfaces produced for short maturities
by the pricing of vanilla options. The resulting pricing method of path-dependent options turns
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out to be too slow for practical implementation and no attempt of calibration is performed.
The aim of this paper is two-fold: first emphasize on market data that the calibration of the
Stationary Heston model does fit implied volatility surface for short maturities in a satisfactory
way and then propose efficient numerical schemes based on cubature formulas (vanilla options)
and optimal quantization (American en path-dependent) to price derivatives in such a model.

The underlying idea is that replacing the initial condition of the volatility by the stationary
measure does not modify the long-term behavior of the implied volatility surface but does inject
more randomness into the volatility for short maturities. This tends to produce a steeper smile for
short maturities than the original model, which is the kind of behavior we are looking for. Later,
the short-time and long-time behavior of the implied volatility generated by such model has been
studied by Jacquier & Shi in [JS17]. Other extensions of the Heston model have been suggested
and extensively analyzed in order to reproduce the slope of the skew for short-term expiring
options: the Rough Heston model where the volatility satisfies a Voltera equation driven by a
“rough” Liouville process with H-Hölder paths, H » 0.1 (see [JR16, GJRS18, GJR18, CGP21,
GR19] for details on the model and numerical solutions).

In the beginning of the paper, we briefly recall the well-known methodology used for the
pricing of European option in the regular Heston model. Based on that, we express the price I0

of a European option on the asset SpνqT as

I0 “ E
“

e´rT ϕpS
pνq
T q

‰

“ E
“

fpvν0 q
‰

(0.1)

where fpxq denotes the price of the European option in the regular Heston model with same
parameters but starting from v0 “ xP p0,`8q. The last expectation can be computed efficiently
using quadrature formulas either based on optimal quantization of the Gamma distribution or
on Laguerre polynomials.

Once we are able to price European options, we can think of calibrating our model to market
data. Indeed the parameters of the model are calibrated using the implied volatility surface
observed in the market. However, the calibration of the Heston model is highly depending on
the initial guess we choose in the minimization problem. This is due to an over-parametrization of
the model (see [GR09]). Hence, when we consider the Heston model in its stationary regime, there
is one parameter less to calibrate as the initial value of the volatility is no longer deterministic.

In the second part of paper, we deal with the pricing of Exotic options such as Bermudan
and Barrier options. We propose a method based on hybrid product recursive quantization. The
“hybrid” term comes from the fact that we use two different types of schemes for the discretization
of the volatility and the asset (Milstein and Euler-Maruyama). Recursive quantization was first
introduced by Pagès & Sagna in [PS15]. It is a Markovian quantization (see [PPP04]) drastically
improved by the introduction of fast deterministic optimization procedure of the quantization
grids and the transition weights. This optimization allows them to drastically reduce the time
complexity by an order of magnitude and build such trees in a few seconds. Originally devised
for Euler-Maruyama scheme of one dimensional Brownian diffusion, it has been extended to
one-dimensional higher-order schemes by [MRKP18] and to medium dimensions using product
quantization (see [FSP18, RMKP17, CFG18, CFG17, PS20]). Then, once the quantization tree is
built, we proceed by a backward induction using the Backward Dynamic Programming Principle
for the price of Bermudan options and using the methodology detailed in [Sag10, Pag18] based
on the conditional law of the Brownian Bridge for the price of Barrier options.

The paper is organized as follows. First, in Section 1, we recall the definition of the Heston
model and the interesting features of the volatility diffusion which bring us to define the Sta-
tionary Heston model. In Section 2, we give a fast solution for the pricing of European options
in the Stationary Heston model when there exists methods for the Heston model. Finally, once
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we are able to price European options, we can define the optimization problem of calibration
on implied volatility surface. We perform the calibration of both models and compare their
induced smile for short maturities options. In Section 3, we propose a numerical method based
on hybrid product recursive quantization for the pricing of exotic financial products: Bermudan
and Barrier options.

1 The Heston Model

The Heston model is a two-dimensional diffusion process pSpxqt , vxt qtě0 with Spxqt is the price of
the risky asset at time t, and vxt the volatility at time t, depending on x ą 0 the inital value of
the volatility. This two-dimensional process pSpxqt , vxt qtě0 is solution to the following Stochastic
Differential Equation

$

’

’

&

’

’

%

dS
pxq
t

S
pxq
t

“ pr ´ qqdt`
a

vxt dWt,

dvxt “ κpθ ´ vxt qdt` ξ
a

vxt d
ĂWt

(1.1)

where

• Spxq0 “ s0 ą 0 is the initial value of the price of the risky asset and vx0 “ x ą 0 is the
deterministic initial condition of the volatility,

• pW,ĂW q is a two-dimensional correlated Brownian motion, with correlation ρ P r´1, 1s
(correlation between the asset and the volatility),

• r P R denotes the interest rate, and q ě 0 is the dividend rate,

• θ ą 0 the long run average price variance,

• κ ą 0 the rate at which vxt reverts to θ,

• ξ ą 0 is the volatility of the volatility.

This model is widely used by practitioner for various reasons. One is that it leads to semi-
closed forms for vanilla options. The other reason is that it represents well the observed mid and
long-term market behavior of the implied volatility surface observed on the market. However, it
fails producing or even fitting to the smile observed for short-term maturities.

Remark 1.1 (The volatility). One can notice that the volatility process is autonomous thence
we are facing a one dimensional problem. Moreover, the volatility process is following a Cox-
Ingersoll-Ross (CIR) diffusion also known as the square root diffusion. Existence and uniqueness
of a strong solution to this stochastic differential equation has been first shown in [IW81], if
x ě 0. Moreover, it has been shown, see e.g. [LL11], that, if the Feller condition

ξ2 ď 2κθ (1.2)

is in force, then for every x ą 0, then there exists a unique solution pvxt qtě0 to the volatility
equation which satisfies

@t ě 0, Ppτx0 “ `8q “ 1 (1.3)

where τx0 is the first hitting time defined by

τx0 “ inftt ě 0 | vxt “ 0u where infH “ `8. (1.4)
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Moreover, the CIR diffusion admits, as a Markov process, a unique stationary regime, charac-
terized by its invariant distribution, the Gamma distribution

ν “ γpα, βq (1.5)

where
α “ θβ and β “ 2κ{ξ2. (1.6)

Based on the above remarks, the idea is to precisely consider the volatility process under
its stationary regime, i.e., replacing the deterministic initial condition from the Heston model
by a ν-distributed random variable independent of pW,ĂW q. We will refer to this model as the
Stationary Heston model. Doing so, we inject more randomness for short maturities (t small)
into the volatility but also to reduce the number of free parameters to stabilize and robustify
the calibration of the Heston model which is commonly known to be overparametrized (see
e.g. [GR09]).

This model was first introduced by [PP09] (see also [IW81], p. 221). More recently, [JS17]
studied its small-time and large-time behaviors of the implied volatility. The dynamic of the asset
price pSpνqt qtě0 and its stochastic volatility pvνt qtě0 in the Stationary Heston model are given by

$

’

’

&

’

’

%

dS
pνq
t

S
pνq
t

“ pr ´ qqdt`
a

vνt dWt

dvνt “ κpθ ´ vνt qdt` ξ
a

vνt d
ĂWt

(1.7)

where vν0 „ ν “ γpα, βq with β “ 2κ{ξ2, α “ θβ. Other parameters Spνq0 , r and q are the same
as those in (1.1) and the parameters ρ, θ, κ, θ and ξ can be described as in the Heston model.

2 Pricing of European Options and Calibration

In this section, we first calibrate both Stationary Heston and Heston models and then compare
their short-term behaviors of their resulting implied volatility surfaces. For that purpose we
relied on a dataset of options price on the Euro Stoxx 50 observed the 26th of September 2019
(see Figure 1). This is why, as a preliminary step we briefly recall the well-known methodology
for the evaluation of European Call and Put in the Heston model. Based on that, we outline
how to price these options in the Stationary Heston model. Then, we describe the methodology
employed for the calibration of both models: the Stationary Heston model (1.7) and the Heston
model (1.1), both under the Feller condition (1.2), and then we discuss the obtained parameters
and compare their short-term behaviors.

2.1 European options pricing

The price of the European option with payoff ϕ on the asset SpνqT , under the Stationary Heston
model, exercisable at time T is given by

I0 “ E
“

e´rT ϕpS
pνq
T q

‰

. (2.1)

After preconditioning by vν0 , we have

I0 “ E
”

E
“

e´rT ϕpS
pνq
T q | σpvν0 q

‰

ı

“ E
“

fpvν0 q
‰

(2.2)

where fpvq is the price of the European option in the Heston model with deterministic initial
conditions for the set of parameters λpvq “ ps0, r, q, θ, κ, ξ, ρ, vq.
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Example 2.1 (Call). If ϕ is the payoff of a Call option then f is simply the price given by
Fourier transform in the Heston model of the European Call Option. The price at time 0, for a
spot price s0, of an European Call Cpλpvq,K, T q with expiry T and strike K under the Heston
model with parameters λpvq “ ps0, r, q, θ, κ, ξ, ρ, vq is

Cpλpvq,K, T q “ E
“

e´rT pS
pvq
T ´Kq`

‰

“ e´rT
´

E
“

S
pvq
T 1

S
pvq
T ěK

‰

´K E
“

1
S
pvq
T ěK

‰

¯

“ s0 e´qT P1

`

λpvq,K, T
˘

´K e´rT P2

`

λpvq,K, T
˘

(2.3)

with P1

`

λpvq,K, T
˘

and P2

`

λpvq,K, T
˘

given by

P1

`

λpvq,K, T
˘

“
1

2
`

1

π

ż `8

0
Re

ˆ

e´iu logpKq

iu

ψ
`

λpvq, u´ i, T
˘

s0 epr´qqT

˙

du

P2

`

λpvq,K, T
˘

“
1

2
`

1

π

ż `8

0
Re

ˆ

e´iu logpKq

iu
ψ
`

λpvq, u, T
˘

˙

du

(2.4)

where i is the imaginary unit s.t. i2 “ ´1, ψ
`

λpvq, u, T
˘

is the characteristic function of the
logarithm of the stock price process at time T . Several representations of the characteristic func-
tion exist, we choose to use the one proposed by [SST04, Gat11, AMST07], which is numerically
more stable. It reads

ψ
`

λpvq, u, T
˘

“ E
“

eiu logpS
pvq
T q | S

pvq
0 , x

‰

“ eiuplogps0q`pr´qqT q eθκξ
´2
`

pκ´ρξui´dqT´2 logpp1´g e´dtq{p1´gqq
˘

ˆ ev
2ξ´2pκ´ρξui´dqp1´e´dtq{p1´g e´dtq

(2.5)

with

d “
a

pρξui´ κq2 ´ ξ2p´ui´ u2q and g “ pκ´ ρξui´ dq{pκ´ ρξui` dq. (2.6)

Hence, in (2.2), fpvq can be replaced by C
`

λpvq,K, T
˘

, which yields

I0 “ E
“

e´rT pS
pνq
T ´Kq`

‰

“ E
”

C
`

λpvν0 q,K, T
˘

ı

. (2.7)

Now, we come to the pricing of European options in the Stationary Heston model, using the
expression of the density of vν0 „ γα, βq, (2.2) reads

I0 “ E
“

fpvν0 q
‰

“

ż `8

0
fpvq

βα

Γpαq
vα´1 e´βv dv. (2.8)

Now, several approaches exists in order to approximate this integral on the positive real line.

• Quantization based quadrature formulas. One could use a quantization-based cubature formula
with an optimal quantizer of vν0 with the methodology detailed in Appendix B. Given that optimal
quantizer of size N , pvN0 , we approximate I0 by pIN0

pIN0 “ E
“

fppvN0 q
‰

“

N
ÿ

i“1

fpvN0,iqP
`

pvN0 “ vN0,i
˘

. (2.9)
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Remarks 2.2. In one dimension, the minimization problem, that consists in building an optimal
quantizer, commute with affine transformations. Hence applying a affine transformation T to
an optimal quantizer at level N of a distribution µ makes it an optimal quantizer of µ ˝ T´1.
Thus , if we consider an optimal quantization pXN of a standard normal distribution N p0, 1q then
µ ` σ pXN is an optimal quantizer of N pµ, σ2q and the associated probabilities of each Voronoi
centroid stay the same.

In our case, noticing that if we consider a Gamma random variableX „ γpα, 1q then the rescaling
of X by 1{β yields X{β „ γpα, βq. Hence, for building the optimal quantizer pvN0 of vν0 , we can
build an optimal quantizer of X „ γpα, 1q and then rescale it by 1{β, yielding pvN0 “ pXN{β. Our
numerical tests showed that it is numerically more stable to use this approach.

In order to build the optimal quantizer, we use Lloyd’s method detailed in Appendix B to
X „ γpα, 1q with the cumulative distribution function FX pxq “ PpX ď xq and the partial first
moment KX pxq “ ErX 1Xďxs given by

FX pxq “
Γpα, xq

Γpαq
, KX pxq “ αFX pxq ´

xα e´x

Γpαq
, x ą 0

FX pxq “ KX pxq “ 0, otherwise.
(2.10)

where Γpα, xq “
şx
0 t

α´1 e´t dt is the lower incomplete gamma function. The distribution (weights)
of the optimal quantizer pvN0 is given by (B.10)

P
`

pvN0 “ vN0,i
˘

“ P
`

pXN “ xNi
˘

“ FX
`

xNi`1{2

˘

´ FX
`

xNi´1{2

˘

(2.11)

where, for every i P t2, . . . , Nu, xNi´1{2 “
xNi´1`x

N
i

2 and xN1{2 “ 0 and xNN`1{2 “ `8.

• Quadrature formula from Laguerre polynomials. One could also use an algorithm based on
fixed point quadratures for the numerical integration. Indeed, noticing that the density we are
integrating against is a gamma density which is exactly the Laguerre weighting function (up to
a rescaling). Then, I0 rewrites

I0 “

ż `8

0
fpvq

βα

Γpαq
vα´1 e´βv dv “

βα

Γpαq

ż `8

0
fpvqωpvqdv (2.12)

where ωpvq “ vα´1 e´βv is the Laguerre weighting function. Then, for a fixed integer n ě 1 (1),
I0 is approximated by

rIn0 “
βα

Γpαq

n
ÿ

i“1

ωifpviq (2.13)

where the vi’s are the associated Laguerre nodes and the ωi’s their weights (2).

2.2 Calibration

Now that we are able to compute the price of European options, we define the problem of
minimization we wish to optimize in order to calibrate our models parameters. Let PSH be the
set of parameters of the Stationary Heston model that needs to be calibrated, defined by

PSH “
 

φ “ pθ, κ, ξ, ρq P R`ˆR`ˆR`ˆr´1, 1s
(

(2.14)
1In practice, we choose n “ 20. This number of points allows us to reach a high precision while keeping the

computation time under control.
2During our numerical tests, we used the numerical integration routine gsl_integration_fixed_laguerre devel-

oped in the C++ gsl library. See https://www.gnu.org/software/gsl/doc/html/integration.html for more details
on the implementation.
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Figure 1: Implied volatility surface of the Euro Stoxx 50 as of the 26th of September 2019.
(S0 “ 3541, r “ ´0.0032 and q “ 0.00225) The expiries T are given in days and the strikes K
in percentage of the spot.

and let PH be the set of parameters of the Heston model that needs to be calibrated, defined by

PH “
 

φ “ px, θ, κ, ξ, ρq P R`ˆR`ˆR`ˆR`ˆr´1, 1s
(

. (2.15)

The others parameters are directly inferred from the market: we get S0 “ 3541, r “ ´0.0032
and q “ 0.00225. Note that we did not directly included the Feller condition (1.2) in the set of
parameters PSH and PH since this constraint will be introduced in the loss function of the cali-
bration problem as a penalization (see further on). Indeed, preliminary calibration attempt tests
performed without constraints yielded parameters really far from fulfilling the Feller condition.
Which was inconsistent with the aim of pricing path-dependent or American style derivatives by
any method.

In our case, we calibrate to option prices having all the same maturity. The problem can be
formulated as follows: we search for the set of parameters φ‹ P P that minimizes the relative
error between the implied volatility observed on the market and the implied volatility produced
by the model for the given set of parameters, such that P “ PSH for the Stationary Heston model
and P “ PH for the Heston model. There is no need to calibrate the parameters s0, r and q
since they are directly observable in the market.

Being interested in the short-term behaviors of the models, it is natural to calibrate both
models based on options prices at a small expiry. Once the optimization procedures have been
performed, we compare their performances for small expiries. For that, we calibrate using only
the data on the volatility surface in Figure 1 with expiry 50 days (T “ 50{365) and then we
compare both models to the market implied volatility at expiry 22 days which is the smallest
available in the data set.

Remark 2.3. The calibration is performed in C++ on a laptop with a 2,4 GHz 8-Core Intel
Core i9 CPU using the randomized version of the simplex algorithm of [NM65] proposed in the
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C++ library GSL. This algorithm is a derivative-free optimization method. It uses only the
value of the function at each evaluation point. The computation time for calibrating the Heston
model is around 20s and a bit more than a minute for the Stationary model. However, these
computation times need to be considered carefully because the calibration time highly depends
on the initial condition we choose for the minimizer and on the implementation of the Call pricer
in the Heston model.

Let us be more precise. We want to find the set of parameter φ‹ that minimizes the relative
error between the volatilities observed in the market and the ones generated by the model while
enforcing the Feller condition. To take this constraint into account it appears that the most
convenient compromise was to introduce it as a penalization in the loss function to be minimized,
hence leading to the following problem

min
φPP

ÿ

K

ˆ

σMarket
iv pK,T q ´ σModel

iv pφ,K, T q

σMarket
iv pK,T q

˙2

` λmaxpξ2 ´ 2κθ, 0q (2.16)

where T is the expiry of the chosen options chosen a priori, K are their strikes and λ ą 0 is the
penalization factor to be adjusted during the procedure. σMarket

iv pK,T q is the Mark-to-Market
implied volatility taken from the observed implied volatility surface and the implied volatility
σModel
iv pφ,K, T q is the Black-Scholes volatility σ that matches the European Call price in this

model to the price given by Heston or Stationary Heston model with the set of parameters φ.
The resulting parameters after calibration are summarized in Table 1. The Feller condition

is still not fulfilled for both models but it is not far from being satisfied. We choose λ “ 0.01
which seems to be right the compromise in order to avoid underfitting the model because of the
constraint.

φ‹ ρ v0 θ κ ξ

Heston ´0.83 0.0045 0.17023 2.19 1.04

Stationary Heston ´0.99 0.02691 19.28 1.15

Table 1: Parameters obtained for both models after calibration with penalization (λ “ 0.01) for
options with maturity 50 days (S0 “ 3541, r “ ´0.0032 and q “ 0.00225).

Figure 2 displays the resulting implied volatility curves at 50 days and 22 days for both
calibrated models and observed in the market with calibration at 50 days.
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Figure 2: Implied volatilities for 22 (left) and 50 (right) days expiry options after calibration at
50 days with penalization.
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Now, we extrapolate the implied volatility of both models for very short term maturities
in Figure 3. The Stationary Heston model produces the desired smile, however the Heston
model fails to produce prices sensibly different than 0 for strikes higher than 105 with this set of
parameters, this is why there is no values in implied volatility curves.
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Figure 3: Implied volatilities for 7 (left) and 14 (right) days expiry options after calibration at
50 days with penalization.

From Figure 3 we can see that the Heston model fails at producing the desired smile for
very small maturities whereas the Stationary model meets no difficulty to generate it. Figure 4
reproduces the term-structure of the implied volatility as a function of T in both models.
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Figure 4: Term-structure of the volatility as a function of T and K of both models (left: Heston
and right: Stationary Heston) after calibration at 50 days with penalization.

Figure 5 represents the relative error between the implied volatility given by the market and
the one given by the models calibrated models at 50 days using a penalization. The Heston model
completely fails to preserve the term-structure while being calibrated at 50 days. In comparison,
the Stationary Heston behaves much better and the relative error does not explodes for long-term
expiries, meaning that the long run average price variance is well caught.
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3 Toward the pricing of Exotic Options

In this Section, we evaluate first Bermudan options and then Barrier options under the Stationary
Heston model. For both products, the pricing rely on a Backward Dynamic Programming Prin-
ciple. The numerical solution we propose is based on a two-dimensional product recursive quan-
tization scheme. We extend the methodology previously developed by [FSP18, CFG18, CFG17],
where they considered an Euler-Maruyama scheme for both components. In this paper, we con-
sider a hybrid scheme made up with an Euler-Maruyama scheme for the log-stock price dynamics
and a Milstein scheme for the (boosted) volatility process. Finally, we apply the backward algo-
rithm that corresponds to the financial product we are dealing with (the Quantized Backward
Dynamic Programming Principle for Bermudan Options, see [BP03, BPP05, Pag18] and the
algorithm by [Sag10, Pag18] for Barrier Options based on the conditional law of the Brownian
motion).

3.1 Discretization scheme of a stochastic volatility model

We first present the time discretization schemes we use for the asset-volatility couple pSpνqt , vνt qtPr0,T s.
For the volatility, we choose a Milstein on a boosted version of the process in order to preserve
the positivity of the volatility and we select an Euler-Maruyama scheme for the log of the asset.

The boosted volatility. Based on the discussion in Appendix A, we will work with the
following boosted volatility process: Yt “ eκt vνt , t P r0, T s for some κ ą 0, whose diffusion is given
by

dYt “ eκt κθdt` ξ eκt{2
a

YtdĂWt. (3.1)

The Milstein discretization scheme of Yt is given by

sYtk`1
“M

rb,rσ

`

tk, sYtk , Zk`1

˘

(3.2)
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with pZkqkě1 is an i.i.d. sequence of standard normal random variables, tk “ Tk
n and rb and rσ

are given by

rbpt, xq “ eκt κθ, rσpt, xq “ ξ
?
x eκt{2 and rσ1xpt, xq “

ξ eκt{2

2
?
x

(3.3)

andM
rb,rσ
pt, x, zq defined by

M
rb,rσ
pt, x, zq “ x´

rσpt, xq

2rσ1xpt, xq
` h

ˆ

rbpt, xq ´
prσrσ1xqpt, xq

2

˙

`
prσrσ1xqpt, xqh

2

ˆ

z `
1

?
hrσ1xpt, xq

˙2

.

(3.4)
We made this choice of scheme because, under the Feller condition, the positivity of M

rb,rσ
is

ensured, since

M
rb,rσ
pt, x, zq “ h eκt

´

κθ ´
ξ2

4

¯

` h
ξ2 eκt

4

ˆ

z `
2
?
x

?
hξ eκt{2

˙2

(3.5)

and
ξ2 ď 2κθ ď 4κθ.

Other schemes could have been used, see [Alf05] for an extensive review of the existing
schemes for the discretization of the CIR model, but in our case we needed one allowing us to
use the fast recursive quantization, i.e., where we can express explicitly and easily the cumulative
distribution function and the first partial moment of the scheme, which is the case of the Milstein
scheme (we give more details in Subsection 3.2).

Hence, as our time-discretized scheme is well defined because its positivity is ensured if
the Feller condition is satisfied, we can start to think of the time-discretization of our process
pS
pνq
tk
qkPJ0,nK.

The log-asset. For the asset, the standard approach is to consider the process which is the
logarithm of the asset Xt “ logpStq. Applying Itô’s formula, the dynamics of Xt is given by

dXt “

´

r ´ q ´
vt
2

¯

dt`
?
vtdWt. (3.6)

Now, using a standard Euler-Maruyama scheme for the discretization of Xt, we have
#

sXtk`1
“ Eb,σ

`

tk, sXtk ,
sYtk , Z

1
k`1

˘

sYtk`1
“M

rb,rσ

`

tk, sYtk , Z
2
k`1

˘ (3.7)

where pZ1
k , Z

2
kqkě1 is an i.i.d. sequence of bivariate normal random vectors with Z1

k „ N p0, 1q,
Z2
k „ N p0, 1q, CorrpZ1

k , Z
2
kq “ ρ and

Eb,σpt, x, y, zq “ x` bpt, x, yqh` σpt, x, yq
?
h z (3.8)

with

bpt, x, yq “ r ´ q ´
e´κt y

2
and σpt, x, yq “ e´κt{2

?
y. (3.9)
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3.2 Hybrid Product Recursive Quantization

In this part, we describe the methodology used for the construction of the product recursive
quantization tree of the couple log asset- boosted volatility in the Heston model.

In Figure 6, as an example, we synthesise the main idea behind the recursive quantization
of a diffusion vt which has been time-discretized with F0pt, x, zq. We start at time t0 “ 0 with
a quantizer pv0 taking values in the grid Γt0 “ tv0

1, . . . , v
0
10u of size 10, where each point is

represented by a black bullet (‚) with probability p0
i “ Pppv0 “ v0

i q is represented by a bar. In
the Stationary Heston model, pv0 is an optimal quantization of the Gamma distribution given
by (1.5) and (1.6). Then, starting from this grid, we simulate the process from time t0 to time
t1 “ 5 days with our chosen time-discretization scheme F0pt, x, zq, yielding rv1 “ F0pt0, pv0, Z1q,
where Z1 is a standardized Gaussian random variable. Each trajectory starts from point v0

i

with probability p0
i . And finally we project the obtained distribution at time t1 onto a grid

Γt1 “ tv
1
1, . . . , v

1
10u of cardinality 10, represented by black triangles (Ĳ) such that pv1 is an optimal

quantizer of the discretized and simulated process starting from quantizer pv0 at time t0 “ 0.

Remark 3.1. In practice, for low dimensions, we do not simulate trajectories. We use the
information on the law of rv1 conditionally of starting from pv0. The knowledge of the distribution
allows us to use deterministic algorithms during the construction of the optimal quantizer of rv1

that are a lot faster than algorithms based on simulation.

−0.005 0.000 0.005 0.010 0.015 0.020 0.025
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v t ̂v0

̃v1= F0(t0, ̂v0,Z1)

̂v1

v1
i

p1
i =ℙ( ̂v1= v1

i )
v0
i

p0
i =ℙ( ̂v0= v0

i )

Figure 6: Example of recursive quantization of the volatility process in the Heston model for one
time-step.

In our case, we consider the following stochastic volatility system
#

dXt “ bpt,Xt, Ytqdt` σpt,Xt, YtqdWt

dYt “ rbpt, Ytqdt` rσpt, YtqdĂWt

(3.10)

where Wt and ĂWt are two correlated Brownian motions with correlation ρ P r´1, 1s, b and σ are
defined in (3.9) and rb and rσ are defined in (3.3). Our aim is to build a quantization tree of the
couple pXt, Ytq at given dates tk, k “ 0, . . . , n based on a recursive product quantization scheme.
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The product recursive quantization of such diffusion system has already been studied by [CFG17]
and [RMKP17] in the case case where both processes are discretized using an Euler-Maruyama
scheme.

One can notice that building the quantization tree ppYkqkPJ0,nK approximating pYtqtPr0,T s is
a one dimensional problem as the diffusion of Yt is autonomous. Hence, based on our choice
of discretization scheme, we will apply the fast recursive quantization (detailed above in Fig-
ure 6) that was introduced in [PS15] for one dimensional diffusion discretized by an Euler-
Maruyama discretization scheme and then extended to higher order schemes, still in one dimen-
sion, by [MRKP18]. The minor difference with existing literature is that, in our problem, the
initial condition y0 is not deterministic.

Then, using the quantization tree of ppYkqkPJ0,nK we will be able to build the tree p pXkqkPJ0,nK
following ideas developed in [FSP18, RMKP17, CFG18, CFG17]. Indeed, once the quantization
tree of the volatility is built, we are in a one-dimensional setting and we are able to use fast
deterministic algorithms.

An estimate of the L2-error induced by the above “hybrid” product recursive quantiza-
tion approximation scheme has been established in [Mon20], Chapter 5. Classical results on
quantization-based schemes on the L2-error, showed in [FSP18, PS20], do not apply here. These
estimates rely on Lipschitz continuity propagation of the semi-group induced by the scheme which
is not satisfied here (du to presence of a square root in the diffusion term of the volatility in
the CIR model (3.2)). The upper-bound obtained in [Mon20] should be considered with caution
because it does not go to 0 when the number of time-steps goes to infinity. However, in practice,
the number of time-steps is fixed and we study the behavior as a function of N1,j and N2,j .

3.2.1 Quantizing the volatility (a one-dimensional case)

Let pYtqtPr0,T s be a stochastic process in R and solution to the stochastic differential equation

dYt “ rbpt, Ytqdt` rσpt, YtqdĂWt (3.11)

where Y0 has the same law than the stationary measure ν: LpY0q “ ν. In order to approximate
our diffusion process, we choose a Milstein scheme for the time discretization, as defined in 3.4
and we build recursively the Markovian quantization tree ppYtkqkPJ0,nK where pYtk`1

is the Voronoi
quantization of rYtk`1

defined by

rYtk`1
“M

rb,rσ

`

tk, pYtk , Z
2
k`1

˘

, pYtk`1
“ ProjΓYN2,k`1

`

rYtk`1

˘

(3.12)

and the projection operator ProjΓYN2,k`1

p¨q is defined in (B.2), ΓYN2,k`1
“

 

yk`1
1 , . . . , ykN2,k`1

(

is

the grid of the optimal quantizer of rYtk`1
and Z2

k`1 „ N p0, 1q. In order alleviate the notations,
we will denote rYk and pYk in place of rYtk and pYtk .

The first step consists in building pY0, an optimal quantizer of size N2,0 of Y0. Noticing that
Y0 “ vν0 , we use the optimal quantizer we built for the pricing of European options. Then, we
build recursively ppYkqk“1,...,n, where the N2,k-tuple are defined by yk

1:N2,k
“

`

yk1 , . . . , y
k
N2,k

˘

, by
solving iteratively the minimization problem defined in the Appendix B in (B.6), with the help

13



of Lloyd’s method I. Replacing X by rYk`1 in (B.6) yields

yk`1
j “

E
”

rYk`1 1Yk`1 PCj

`

ΓYN2,k`1

˘

ı

P
´

rYk`1 P Cj
`

ΓYN2,k`1

˘

¯

“

E
”

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

1
M

rb,rσ

`

tk,pYk,Z
2
k`1

˘

PCj

`

ΓYN2,k`1

˘

ı

P
´

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

¯ .

(3.13)

Now, preconditioning by pYk in the numerator and the denominator and using pki “ P
`

pYk “ yki
˘

,
we have

yk`1
j “

E

„

E
”

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

1
M

rb,rσ

`

tk,pYk,Z
2
k`1

˘

PCj

`

ΓYN2,k`1

˘ | pYk

ı



E

„

P
´

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

| pYk

¯



“

N2,k
ÿ

i“1

E
”

M
rb,rσ

`

tk, y
k
i , Z

2
k`1

˘

1
M

rb,rσ

`

tk,y
k
i ,Z

2
k`1

˘

PCj

`

ΓYN2,k`1

˘

ı

pki

N2,k
ÿ

i“1

P
´

M
rb,rσ

`

tk, y
k
i , Z

2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

¯

pki

“

N2,k
ÿ

i“1

´

Kk
i

`

yk`1
j`1{2

˘

´Kk
i

`

yk`1
j´1{2

˘

¯

pki

N2,k
ÿ

i“1

´

F ki
`

yk`1
j`1{2

˘

´ F ki
`

yk`1
j´1{2

˘

¯

pki

(3.14)

where Cj
`

ΓYN2,k`1

˘

“
`

yk`1
j´1{2, y

k`1
j`1{2

‰

is defined in (B.1). F ki and Kk
i are the cumulative distri-

bution function and the first partial moment function of Uki „ µki ` κ
k
i pZ

1
k`1 ` λ

k
i q

2 respectively
with

κkj “
prσrσ1xqptk, y

k
j qh

2
, λkj “

1
?
hrσ1xptk, y

k
j q
,

and µkj “ ykj ´
σptk, y

k
j q

2rσ1xptk, y
k
j q
` h

ˆ

rbptk, y
k
j q ´

prσrσ1xqptk, y
k
j q

2

˙

.

(3.15)

The functions F ki andKk
i can explicitly be determined in terms of the density and the cumulative

distribution function of the normal distribution.

Lemma 3.2. Let U “ µ` κpZ ` λq2, with µ, κ, λ P R, λ ě 0, κ ą 0 and Z „ N p0, 1q then the
cumulative distribution function FX and the first partial moment KU of U are given by

FU pxq “
`

FZ px`q ´ FZ px´q
˘

1xąµ

KU pxq “

ˆ

FU pxq
`

µ` κpλ2 ` 1q
˘

`
κ
?

2π

´

x
´

e´
x2
`
2 ´x

`
e´

x2
´
2

¯

˙

1xąµ
(3.16)

where x
`
“

b

x´µ
κ ´ λ, x

´
“ ´

b

x´µ
κ ´ λ and FZ is the cumulative distribution function of Z.

Finally, we can apply the Lloyd algorithm defined in Appendix B.9 with FX and KX defined
by

FX pxq “

N2,k
ÿ

i“1

pki F
k
i pxq and KX pxq “

N2,k
ÿ

i“1

pki K
k
i pxq. (3.17)
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In order to be able to build recursively the tree quantization ppYkqk“0,...,n, we need to have
access to the weights pki “ P

`

pYk “ yki
˘

, which can be themselves computed recursively, as well
as the conditional probabilities pkij “ P

`

pYk`1 “ yk`1
j | pYk “ yki

˘

.

Lemma 3.3. The conditional probabilities pkij are given by

pkij “F
k
i

`

yk`1
j`1{2

˘

´ F ki
`

yk`1
j´1{2

˘

. (3.18)

And the probabilities pk`1
j are given by

pk`1
j “

N2,k
ÿ

i“1

pki p
k
ij . (3.19)

Proof. The
pkij “P

`

pYk`1 “ yk`1
j | pYk “ yki

˘

“P
´

M
rb,rσ

`

tk, pYk, Z
2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

| pYk “ yki

¯

“P
´

M
rb,rσ

`

tk, y
k
i , Z

2
k`1

˘

P Cj
`

ΓYN2,k`1

˘

¯

“F ki
`

yk`1
j`1{2

˘

´ F ki
`

yk`1
j´1{2

˘

and

pk`1
j “P

`

pYk`1 “ yk`1
j

˘

“

N2,k
ÿ

i“1

P
`

pYk`1 “ yk`1
j | pYk “ yki

˘

P
`

pYk “ yki
˘

“

N2,k
ÿ

i“1

pki p
k
ij .

As an illustration, we display in Figure 7 the rescaled grids obtained after recursive quan-
tization of the boosted-volatility, where pvk “ e´κtk pYk and ppYkqk“1,...,n are the quantizers built
using the fast recursive quantization approach.

3.2.2 Quantizing the asset (a one-dimensional case again)

Now, using the fact that pYtqt has already been quantized and the Euler-Maruyama scheme of
pXtqt, as defined (3.8), we define the Markov quantized scheme

rXtk`1
“ Eb,σ

`

tk, pXtk ,
pYtk , Z

1
k`1

˘

, pXtk`1
“ ProjΓXN1,k`1

`

rXtk`1

˘

(3.20)

where the projection operator ProjΓXN1,k`1

p¨q is defined in (B.2), ΓXN1,k`1
is the optimal N1,k`1-

quantizer of rXtk`1
and Z1

k`1 „ N p0, 1q. Again, in order to simplify the notations, rXtk and pXtk

are denoted in what follows by rXk and pXk.
Note that we are still in an one-dimensional case, hence we can apply the same methodology

as developed in Appendix B and build recursively the quantization
`

pXk

˘

k“0,...,n
as detailed above,

15



Quantizer  ̂vk

0.00 0.05 0.10 0.15 0.20 0.25

Time
0
10

20
30
40
50
60

Pr
ob

ab
ilit

y 
 p

k i

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 7: Rescaled Recursive quantization of the boosted-volatility process with its associated
weights from t “ 0 to t “ 60 days with a time step of 5 days with grids of size N “ 10. The
recursive quantization methodology is applied to pYk and then we display the rescaled volatility
pvk “ e´κtk pYk.

where the N1,k-tuple are defined by xk
1:N1,k

“
`

xk1, . . . , x
k
N1,k

˘

. Replacing X by rXk in (B.6) yield

xk`1
j1

“

E
”

Eb,σ
`

tk, pXtk ,
pYtk , Z

1
k`1

˘

1
Eb,σ

`

tk, pXtk ,
pYtk ,Z

1
k`1

˘

PCj1

`

ΓXN1,k`1

˘

ı

P
´

Eb,σ
`

tk, pXtk ,
pYtk , Z

1
k`1

˘

P Cj1
`

ΓXN1,k`1

˘

¯

“

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

E
”

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

1
Eb,σ

`

tk,x
k
i1
,yki2

,Z1
k`1

˘

PCj1

`

ΓXN1,k`1

˘

ı

pkpi1,i2q

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

P
´

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

P Cj1
`

ΓXN1,k`1

˘

¯

pkpi1,i2q

“

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

´

Kk
pi1,i2q

`

xk`1
j1`1{2

˘

´Kk
pi1,i2q

`

xk`1
j1´1{2

˘

¯

pkpi1,i2q

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

´

F kpi1,i2q
`

xk`1
j1`1{2

˘

´ F kpi1,i2q
`

xk`1
j1´1{2

˘

¯

pkpi1,i2q

(3.21)

where pk
pi1,i2q

“ P
`

pXk “ xki1 ,
pYk “ yki2

˘

and F k
pi1,i2q

and Kk
pi1,i2q

are the cumulative distribution
function and the first partial moment function of the normal distribution µk

pi1,i2q
` Z1

k`1σ
k
pi1,i2q
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and they are defined by

F kpi1,i2qpxq “ FZ

ˆ

x´ µk
pi1,i2q

σk
pi1,i2q

˙

Kk
pi1,i2q

pxq “ µkpi1,i2qFZ

ˆ

x´ µk
pi1,i2q

σk
pi1,i2q

˙

` σkpi1,i2qKZ

ˆ

x´ µk
pi1,i2q

σk
pi1,i2q

˙

(3.22)

with
µkpi1,i2q “ xki1 ` bptk, x

k
i1 , y

k
i2qh and σkpi1,i2q “ σptk, x

k
i1 , y

k
i2q
?
h (3.23)

and FZ and KZ are the cumulative distribution function and the first partial moment of the
standard normal distribution.

Finally, we apply the Lloyd method defined in Appendix (B.9) with FX and KX defined by

FX pxq “

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

pkpi1,i2q F
k
pi1,i2q

pxq and KX pxq “

N1,k
ÿ

i1“1

N2,k
ÿ

i2“1

pkpi1,i2qK
k
pi1,i2q

pxq. (3.24)

The sensitive part concerns the computation of the joint probabilities pk
pi1,i2q

. Indeed, they
are needed at each step in order to be able to design recursively the quantization tree.

Lemma 3.4. The joint probabilities pk
pi1,i2q

are given by the following forward induction

pk`1
pj1,j2q

“

N1,k
ÿ

i“1

N2,k
ÿ

j“1

pkpi1,i2qP
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

(3.25)

where the joint conditional probabilities P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

are
given by the formulas below, depending on the correlation

• if CorrpZ1
k`1, Z

2
k`1q “ ρ “ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ pki2j2

”

N
`

xki1,i2,j1,`
˘

´N
`

xki1,i2,j1,´
˘

ı

,

(3.26)
where pki2j2 is defined in (3.18) and

xki1,i2,j1,´ “
xk`1
j1´1{2 ´ µ

k
pi1,i2q

σk
pi1,i2q

, xki1,i2,j1,` “
xk`1
j1`1{2 ´ µ

k
pi1,i2q

σk
pi1,i2q

, (3.27)

with µk
pi1,i2q

and σk
pi1,i2q

defined in (3.23).

• if CorrpZ1
k`1, Z

2
k`1q “ ρ ‰ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

´
b

yki2,j2,´ ´ λ
k
i2 ,

b

yki2,j2,` ´ λ
k
i2

ı¯

` P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

”

´

b

yki2,j2,` ´ λ
k
i2 ,´

b

yki2,j2,´ ´ λ
k
i2

¯¯

(3.28)
where

yki2,j2,´ “ 0_
yk`1
j2´1{2 ´ µ

k
i2

κki2
, yki2,j2,` “ 0_

yk`1
j2`1{2 ´ µ

k
i2

κki2
, (3.29)

with µki2, κ
k
i2

and λki2 defined in (3.15).
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Remark 3.5. The probability in the right hand side of (3.28) can be computed using the
cumulative distribution function of a correlated bivariate normal distribution3. Indeed, let

Fρpx1, x2q “ PpX1 ď x1, X2 ď x2q

the cumulative distribution function of the correlated centered Gaussian vector pX1, X2q with
unit variance and correlation ρ, we have

P
`

X1 P ra, bs, X2 P rc, ds
˘

“ Fρpb, dq ´ Fρpb, cq ´ Fρpa, dq ` Fρpa, cq (3.30)

with a, c ě ´8 and b, d ď `8.

Proof.

pk`1
pj1,j2q

“P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

˘

“

N1,k
ÿ

i“1

N2,k
ÿ

j“1

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

P
`

pXk “ xki1 ,
pYk “ yki2

˘

“

N1,k
ÿ

i“1

N2,k
ÿ

j“1

pkpi1,i2qP
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

.

• if CorrpZ1
k`1, Z

2
k`1q “ ρ “ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ pki2j2 P
`

pXk`1 “ xk`1
j1

| pXk “ xki1 ,
pYk “ yki2

˘

“ pki2j2 P
´

sXk`1 P
`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

| pXk “ xki1 ,
pYk “ yki2

¯

“ pki2j2 P
´

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

P
`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

¯

“ pki2j2

”

N
`

xki1,i2,j1,`
˘

´N
`

xki1,i2,j1,´
˘

ı

,

• if CorrpZ1
k`1, Z

2
k`1q “ ρ ‰ 0

P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

“ P
´

Eb,σ
`

tk, x
k
i1 , y

k
i2 , Z

1
k`1

˘

P
`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

,M
rb,rσ

`

tk, y
k
i2 , Z

2
k`1

˘

P
`

yk`1
j2´1{2, y

k`1
j2`1{2

‰

¯

“ P
´

µkpi1,i2q ` σ
k
pi1,i2q

Z1
k`1 P

`

xk`1
j1´1{2, x

k`1
j1`1{2

‰

, µki2 ` κ
k
i2pZ

2
k`1 ` λ

k
i2q

2 P
`

yk`1
j2´1{2, y

k`1
j2`1{2

‰

¯

“ P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, pZ2
k`1 ` λ

k
i2q

2 P
`

yki2,j2,´, y
k
i2,j2,`

‰

¯

“ P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

´
b

yki2,j2,´ ´ λ
k
i2 ,

b

yki2,j2,` ´ λ
k
i2

ı¯

` P
´

Z1
k`1 P

`

xki1,i2,j1,´, x
k
i1,i2,j1,`

‰

, Z2
k`1 P

”

´

b

yki2,j2,` ´ λ
k
i2 ,´

b

yki2,j2,´ ´ λ
k
i2

¯¯

.

3C++ implementation of the upper right tail of a bivariate normal distribution can be found in John Burkardt’s
website https://people.sc.fsu.edu/~jburkardt/cpp_src/toms462/toms462.html.
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Remark 3.6. Another possibility for the quantization of the Stationary Heston model could be
to use optimal quantizers for the volatility at each date tk in place of using recursive quantization.
Indeed, the volatility pvtqt being stationary and the fact that we required the volatility to start
at time 0 from the invariant measure, we could use the grid of the optimal quantization pv0 of size
N of the stationary measure with its associated weights for every dates, hence setting pvk “ pv0.
We need as well the transitions from time tk to tk`1 defined by

P
`

pvk`1 “ vk`1
j2

| pvk “ vki2
˘

. (3.31)

These probabilities can be computed using the conditional law of the CIR process described
in [CIJR05, And07], which is a non-central chi-square distribution. Then, we would build the
recursive quantizer of the log-asset at date pXk`1 with the standard methodology of recursive
quantization using the already built quantizers of the volatility pvk and the log-asset pXk at time
tk, i.e.

rXk`1 “ Eb,σ
`

tk, pXk, pvk, Z
1
k`1

˘

and pXk`1 “ ProjΓXN1,k`1

`

rXk`1

˘

(3.32)

where, this time, the Euler scheme is not defined as a function of the boosted-volatility but
directly as a function of the volatility and is given by

Eb,σ
`

t, x, v, z
˘

“ x` h
´

r ´ q ´
v

2

¯

`
?
v
?
hz. (3.33)

However, the difficulties with this approach come from the computation of the couple tran-
sitions

P
`

pXk`1 “ xk`1
j1

, pvk`1 “ vk`1
j2

| pXk “ xki1 , pvk “ vki2
˘

. (3.34)

Indeed, these probability weights would not be as straightforward to compute as the methodology
we adopt in this paper, namely using time-discretization schemes for both components. Our
approach allows us to express the conditional probability of the couple as the probability that
a correlated bi-variate Gaussian vector lies in a rectangle domain and this can be easily be
computed numerically.

3.3 Backward algorithm for Bermudan and Barrier options

Bermudan Options. A Bermudan option is a financial derivative product that gives the right
to its owner to buy or sell (or to enter to, in the case of a swap) an underlying product with a
given payoff ψtp¨, ¨q at predefined exercise dates tt0, ¨ ¨ ¨ , tnu. Its price, at time t0 “ 0, is given by

sup
τPtt0,¨¨¨ ,tnu

E
”

e´rτ ψτ pXτ , Yτ q | F t0
ı

where Xt and Yt are solutions to the system defined in (3.10).
In this part, we follow the numerical solution first introduced by [BPP05, BP03]. They

proposed to solve discrete-time optimal stopping problems using a quantization tree of the risk
factors Xt and Yt.

Let FX,Y “ pFq0ďkďn the natural filtration of X and Y . Hence, we can define recursively
the sequence of random variable Lp-integrable pVkq0ďkďn

#

Vn “ e´rtn ψnpXn, Ynq,

Vk “ max
`

e´rtk ψkpXk, Ykq,ErVk`1 | Fks
˘

, 0 ď k ď n´ 1
(3.35)

called Backward Dynamic Programming Principle. Then

V0 “ sup
 

Ere´rτ ψτ pXτ , Yτ q | F0s, τ P Θ0,n

(
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with Θ0,n the set of all stopping times taking values in tt0, ¨ ¨ ¨ , tnu. The sequence pVkq0ďkďn is
also known as the Snell envelope of the obstacle process

`

e´rtk ψkpXk, Ykq
˘

0ďkďn
. In the end,

ErV0s is the quantity we are interested in. Indeed, ErV0s is the price of the Bermudan option
whose payoff is ψk and is exercisable at dates tt1, ¨ ¨ ¨ , tnu.

Following what was defined in (3.35), in order to compute ErV0s, we will need to use the
previously defined quantizer of Xk and Yk: pXk and pYk. Hence, for a given global budget N “

N1,0N2,0`¨ ¨ ¨`N1,nN2,n, the total number of nodes of the tree by the couple p pXk, pYkq0ďkďn, we
can approximate the Backward Dynamic Programming Principle (3.35) by the following sequence
involving the couple p pXk, pYkq0ďkďn

#

pVn “ e´rtn ψnp pXn, pYnq,

pVk “ max
`

e´rtk ψkp pXk, pYkq,ErpVk`1 | p pXk, pYkqs
˘

, k “ 0, . . . , n´ 1.
(3.36)

Remark 3.7. A direct consequence of choosing recursive Markovian Quantization to spatially
discretize the problem is that the sequence p pXk, pYkq0ďkďn is Markovian. Hence ppVkq0ďkďn de-
fined in (3.36) obeying a Backward Dynamic Programming Principle is the Snell envelope of
`

e´rtk ψkp pXk, pYkq
˘

0ďkďn
. This is the main difference with the first approach of [BPP05, BP03],

where in there case they only had a pseudo-Snell envelope of
`

e´rtk ψkp pXk, pYkq
˘

0ďkďn
.

Using the discrete feature of the quantizers, (3.36) can be rewritten
$

’

’

’

’

’

&

’

’

’

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rtn ψnpx

n
i1 , y

n
i2q,

i1 “ 1, . . . , N1,n

i2 “ 1, . . . , N2,n

pvkpx
k
i1 , y

k
i2q “ max

´

e´rtk ψkpx
k
i1 , y

k
i2q,

N1,k`1
ÿ

j1“1

N2,k`1
ÿ

j2“1

πkpi1,i2q,pj1,j2qpvk`1px
k`1
j1

, yk`1
j2
q

¯

,
k “ 0, . . . , n´ 1
i1 “ 1, . . . , N1,k

i2 “ 1, . . . , N2,k

(3.37)
where πk

pi1,i2q,pj1,j2q
“ P

`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

is the conditional
probability weight given in (3.28). Finally, the approximation of the price of the Bermudan
option is given by

E
“

pv0px0, pY0q
‰

“

N2,0
ÿ

i“1

pi pv0px0, y
0
i q (3.38)

with pi “ P
`

pY0 “ y0
i

˘

given by (2.11).

Barrier Options. A Barrier option is a path-dependent financial product whose payoff at
maturity date T depends on the value of the process XT at time T and its maximum or minimum
over the period r0, T s. More precisely, we are interested by options with the following types of
payoff h

h “ fpXT q1tsuptPr0,T sXtPIu
or h “ fpXT q1tinftPr0,T sXtPIu (3.39)

where I is an unbounded interval of R, usually of the forme p´8, Ls or rL,`8q (L is the barrier)
and f can be any vanilla payoff function (Call, Put, Spread, Butterfly, ...).

In this part, we follow the methodology initiated in [Sag10] in the case of functional quan-
tization. This work is based on the Brownian bridge method applied to the Euler-Maruyama
scheme as described e.g. in [Pag18]. We generalize it to stochastic volatility models and product
Markovian recursive quantization. Xt being discretized by an Euler-Maruyama scheme, yielding
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sXk with k “ 0, . . . , n, we can determine the law of maxtPr0,T s sXt and mintPr0,T s sXt given the
values sXk “ xk, sYk “ yk, k “ 0, . . . , n

L
´

max
tPr0,T s

sXt | sXk “ xk, sYk “ yk, k “ 0, . . . , n
¯

“ L
´

max
k“0,...,n´1

`

Gkpxk,ykq,xk`1

˘´1
pUkq

¯

(3.40)

and

L
´

min
tPr0,T s

sXt | sXk “ xk, sYk “ yk, k “ 0, . . . , n
¯

“ L
´

max
k“0,...,n´1

`

F kpxk,ykq,xk`1

˘´1
pUkq

¯

(3.41)

where pUkqk“0,...,n´1 are i.i.d uniformly distributed random variables over the unit interval and
pGk
px,yq,zq

´1 and pF k
px,yq,zq

´1 are the inverse of the conditional distribution functions Gk
px,yq,z and

F k
px,yq,z defined by

Gkpx,yq,zpuq “
´

1´ e
´2n px´uqpz´uq

Tσ2ptk,x,yq

¯

1tuěmaxpx,zqu (3.42)

and
F kpx,yq,zpuq “ 1´

´

1´ e
´2n px´uqpz´uq

Tσ2ptk,x,yq

¯

1tuďminpx,zqu . (3.43)

Now, using the resulting representation formula for E fp sXT ,maxtPr0,T s sXtq (see e.g. [Sag10,
Pag18]), we have a new representation formula for the price of up-and-out options sPUO and
down-and-out options sPDO

sPUO “ e´rT E
“

fp sXT q1suptPr0,T s
sXtďL

‰

“ e´rT E

„

fp sXT q

n´1
ź

k“0

Gk
pXk,Y kq, sXk`1

pLq



(3.44)

and

sPDO “ e´rT E
“

fp sXT q1inftPr0,T s sXtěL

‰

“ e´rT E

„

fp sXT q

n´1
ź

k“0

´

1´ F k
p sXk,sYkq, sXk`1

pLq
¯



(3.45)

where L is the barrier.

Finally, replace sXk and sYk by pXk and pYk and apply the recursive algorithm in order to
approximate sPUO or sPDO by ErpV0s or equivalently Erpv0px0, pY0qs

#

pVn “ e´rT fp pXnq,

pVk “ E
“

gkp pXk, pYk, pXk`1qpVk`1 | p pXk, pYkq
‰

, 0 ď k ď n´ 1
(3.46)

that can be rewritten
$

’

’

’

’

’

&

’

’

’

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rT fpxni q,

i “ 1, . . . , N1,n

j “ 1, . . . , N2,n

pvkpx
k
i1 , y

n
i2q “

N1,k`1
ÿ

j1“1

N2,k`1
ÿ

j2“1

πkpi1,i2q,pj1,j2qpvk`1px
k`1
j1

, yk`1
j2
qgkpx

k
i1 , y

k
i2 , x

k`1
j1
q,

k “ 0, . . . , n´ 1
i “ 1, . . . , N1,k

j “ 1, . . . , N2,k

(3.47)
with πk

pi1,i2q,pj1,j2q
“ P

`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yki2

˘

the conditional proba-
bilities given in (3.28) and gkpx, y, zq is either equal to Gk

px,yq,zpLq or 1 ´ F k
px,yq,zpLq depending

on the option type. Finally, the approximation of the price of the barrier option is given by

ErpV0s “ E
“

pv0px0, pY0q
‰

“

N2,0
ÿ

i“1

pi pv0px0, y
0
i q (3.48)

with pi “ P
`

pY0 “ y0
i

˘

given by (2.11).
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3.4 Numerical illustrations

In this part, we deal with numerical experiments4 in the Stationary Heston model. Throughout
this section we implement the recursive quantization algorithm with size n (the number of time
steps) and quantization grids of constant size: for all k “ 0, . . . , n, we take N1,k “ N1 and
N2,k “ N2 where n is the number of time steps. First, we use the European options framework
to numerically evaluate the errors of recursive quantization as a function of quantization grids
sizes. Then, we evaluate Bermudan options and Barrier options.

Impact of N1, N2 and n. In this paragraph, we want to evaluate the impact that have
the tree parameters N1, N2 and n on the accuracy of the prices computed by product recursive
quantization. For that purpose, we consider pricing of European options in the Stationary Heston
model with parameters given in Table 1 (obtained after the penalized calibration procedure).
We set S0 “ 100 in order to get prices of an order we are used to. The benchmark prices of 10
European options with various strikesK: 5 calls and 5 puts, all in-the-money, with maturity tn “
T “ 0.5 (6 months) are computed using the quadrature formula based on Laguerre polynomials as
explained in Section 2. At this point let us emphasize that we are aware that neither quantization
nor Monte Carlo should be used in practice to compute premia of Eropean options in a Heston
model.

In place of using the backward algorithm (3.36) (without the max function) for computing
the expectation at the expiry date, we use the weights pn

pi1,i2q
defined in (3.25) and computed by

a forward induction, in order to use the quantization based cubature formula

E
“

ψnp pXn, pYnq
‰

“

N1
ÿ

i1“1

N2
ÿ

i2“1

ψnpx
n
i1 , y

n
i2qp

n
pi1,i2q

. (3.49)

The results are reported in Tables 2 and 3. The relative error induced by the quantization-
based approximation is given between brackets. The computation time is split into the time
taken to construct the tree and the pricing time (Equation (3.4)).

First, we compare in Table 2 the prices for a fixed number of time-steps: n “ 180 and we
make vary the parameters N1 and N2. Then in Table 3 we fix pN1, N2q “ p50, 10q and make n
vary.

We notice from Table 3 that the error is mostly explained by the number of the time-steps
n. By comparison, a Monte-Carlo pricer with M “ 300, 000 paths reaches the same order of
precision than our quantization tree with pN1, N2q “ p100, 10q and n “ 180 in 3.3s. Once the
quantification tree is built, the price calculation is extremely fast and if we compare it with the
Monte Carlo estimator we have a ratio of 3.3{0.173 » 19 in calculation speed. Note also that it
is much more efficient to store the quantization tree than to store all the paths of a Monte Carlo
estimator.

4All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8–Core Intel Core i9 CPU.
The computations of the transition probabilities are parallelized on the CPU.
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pN1, N2q

K Benchmark p20, 5q p50, 10q p100, 10q p150, 10q

Call

80 20.17 19.71 p2.2%q 20.01 p0.8%q 20.07 p0.50%q 20.09 p0.42%q
85 15.56 15.01 p3.5%q 15.38 p1.14%q 15.45 p0.70%q 15.46 p0.60%q
90 11.24 10.64 p5.3%q 11.06 p1.58%q 11.13 p0.92%q 11.15 p0.77%q
95 7.383 6.825 p7.5%q 7.233 p2.02%q 7.314 p0.93%q 7.331 p0.70%q
100 4.196 3.769 p10.1%q 4.110 p2.06%q 4.196 p0.01%q 4.215 p0.44%q

Put

100 4.469 4.167 p6.75%q 4.402 p1.48%q 4.455 p0.31%q 4.464 p0.10%q
105 7.171 7.031 p1.96%q 7.177 p0.08%q 7.234 p0.86%q 7.243 p0.99%q
110 10.86 10.81 p0.39%q 10.90 p0.36%q 10.95 p0.87%q 10.96 p0.93%q
115 15.38 15.39 p0.10%q 15.38 p0.005%q 15.41 p0.24%q 15.42 p0.26%q
120 20.30 20.39 p0.43%q 20.29 p0.08%q 20.27 p0.17%q 20.27 p0.17%q

Time 1.7s + 5ms 16.5s + 30ms 81s + 173ms 186s + 406ms

Table 2: Comparison between European options prices, with maturity T “ 0.5 (6 months), given
by quantization and the benchmark, as a function of the strike K and pN1, N2q where we set
n “ 180. Relative error in percent between brackets.

n

K Benchmark 30 60 90 180

Call

80 20.17 20.01 p0.82%q 20.04 p0.67%q 20.03 p0.68%q 20.01 p0.8%q
85 15.56 15.33 p1.44%q 15.39 p1.07%q 15.40 p1.02%q 15.38 p1.14%q
90 11.24 10.95 p2.58%q 11.04 p1.74%q 11.06 p1.54%q 11.06 p1.58%q
95 7.383 7.047 p4.55%q 7.174 p2.82%q 7.211 p2.32%q 7.233 p2.02%q
100 4.196 3.883 p7.46%q 4.021 p4.16%q 4.066 p3.09%q 4.110 p2.06%q

Put

100 4.469 4.161 p6.88%q 4.305 p3.65%q 4.356 p2.52%q 4.402 p1.48%q
105 7.171 6.969 p2.81%q 7.080 p1.27%q 7.125 p0.64%q 7.177 p0.08%q
110 10.86 10.81 p0.45%q 10.85 p0.09%q 10.86 p0.08%q 10.90 p0.36%q
115 15.38 15.38 p0.04%q 15.38 p0.01%q 15.38 p0.04%q 15.38 p0.005%q
120 20.30 20.28 p0.10%q 20.28 p0.12%q 20.29 p0.09%q 20.29 p0.08%q

Time 3.6s + 30ms 6.5s + 30ms 9s + 30ms 16.5s + 30ms

Table 3: Comparison between European options prices, with maturity T “ 0.5 (6 months), given
by quantization and the benchmark, as a function of the strike K and of the number n of time-
steps where we set pN1, N2q “ p50, 10q. Relative error in percent between brackets.

Bermudan options. For Bermudan options, we do not use the parameters we calibrated in
subsection 2.2 because the interest rate and the dividend rate are very close to 0. Hence the
prices of Bermudan options with those parameters are equal to European ones. In place we use
the parameter set No.5 defined in [FO11] which is a set of parameters commonly used in the
financial literature for the pricing of Bermudan options that we recall in Table 4.
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ρ θ κ ξ S0 r q

´0.64 0.0348 1.15 0.39 100 0.04 0

Table 4: Test set No.5 from [FO11].

Moreover, for the Bermudan Put we will use its European price as a control variate. This has
to be compared to including the payoff function into the regression basis at each time-steps in
regression-projection methods “à la Longstaff-Schwarz”. The Backward Dynamic Programming
Principle becomes

#

rVn “ 0,

rVk “ max
`

e´rtk ψkpXk, Ykq ´ C
EU
tn´tk

peXkq,ErrVk`1 | Fks
˘

, 0 ď k ď n´ 1,
(3.50)

where CEUt pxq is the European price for maturity t with initial stock price x in the Stationary
Heston model (see [BPP05] for more details). Finally, the price of the Bermudan option V0 is
equal to

V0 “ rV0 ` C
EU
tn pS0q

In Table 5, we display the prices obtain using product hybrid recursive quantization of Bermudan
Call/Put with n equally spaced exercise dates, strikeK “ 100 and maturity T “ 0.25. The prices
of the European Call and Put are 3.6729 and 2.6779 respectively. QCall and QPut are the prices
given by quantization without control variate and QPutCV are the prices obtained using the
control variate as detailed in Equation (3.50).

n 20 40 60

N1 N2 QCall QPut QPutCV QCall QPut QPutCV QCall QPut QPutCV

10 5 3.8048 2.9741 2.7335 3.6829 2.9529 2.7329 3.6750 3.0341 2.7266
20 10 3.7693 2.8613 2.7371 3.8152 2.9447 2.7383 3.7944 2.9649 2.7382
50 20 3.6997 2.7732 2.7377 3.7338 2.8156 2.7401 3.6811 2.8236 2.7402
100 20 3.6908 2.7635 2.7374 3.6447 2.7553 2.7384 3.6417 2.7767 2.7387
200 20 3.6782 2.7602 2.7375 3.6470 2.7488 2.7382 3.6484 2.7704 2.7384

Table 5: Pricing of Bermudan options with maturity T “ 0.25 and strike K “ 100 in the
Stationary Heston model with product hybrid recursive quantization.

As r ą 0, the Bermudan Call price is equal to the European one, namely 3.6729. Hence,
we display the prices only for the sake of studying the convergence of the methodology. We
notice in Table 5 that QCall converges to the European price but, as prescribed by theoretical
error bounds, the more timesteps n we add in the quantization tree, the larger the grids need to
be. For the Put, the methodology without control variate converges as well but control variate
dramatically reduces the size of the grid needed in order to converge.

We are aware that the theoretical assumptions to obtain error bounds for quantization based
space discretization schemes of the Milstein scheme (see [PS20]) are not satisfied by the volatility
process due to the presence of a square root. However, considering larger grids allow overcome
this problem in practice. Indeed we provide error bound for our model in a supplementary
material available in arXiv which guided our choice for the ratio grid size of the volatility over
grid size of the asset for a given time discretion time step (see also [Mon20]).
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Heston vs Stationary Heston. In Figure 8, we compare the prices of Bermudan Call / Put
with maturity T “ 0.25 in the Heston model and the Stationary Heston model where both prices
are given by product hybrid recursive quantization with N1 “ 50, N2 “ 20 and n “ 40. Our
aim is just to highlight the prices both models differ significantly, especially for short maturities.
In order to compare the prices, we compute the relative difference between the 2 prices, namely
pPSH´PHq{PH where PH is the price in the Heston model and PSH is the price in the Stationary
Heston model. We used the same values given in Table 4 for the parameters in common and set
v0 “ θ in the case of the Heston model. This means that we took as a starting value for the
volatility of the Heston its long-term mean. This confirms that, as expected, both models yield
different prices. To be more precise, prices in the Stationary Heston model are higher on the
tails and lower close to moneyness.
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Figure 8: Relative difference of Bermudan prices between the Heston model and the Stationary
Heston model.

Barrier options. Finally, we apply our recursive quantization algorithm for a path-dependent
European option pricing. The parameters of the Stationary Heston model are given in Table 1
and S0 “ 100. The path-dependent option is an up-and-out Barrier option with strike K “ 100,
maturity T “ 0.5 (6 months), barrier L “ 115 and N2 “ 10. In Figure 9, we display the prices
obtained for a fixed value N2 “ 10 and differents values of N1 and n. Again, we can notice the
impact of n on the approximated price.
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Figure 9: Prices of a Barrier option in the Stationary Heston model given by product hybrid
recursive quantization with fixed value N2 “ 10.
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Appendices
A Discretization scheme of the volatility preserving the positivity
We recall the dynamics of the volatility

dvt “ κpθ ´ vtqdt` ξ
?
vtdĂWt

with κ ą 0, θ ą 0 and ξ ą 0. In this section, we discuss the choice of the discretization scheme under the
Feller condition, which ensures the positivity of the process.

Euler-Maruyama scheme. Let pZkqkě1 an i.i.d. sequence of standard normal distribution. Dis-
cretizing the volatility using an Euler-Maruyama scheme

svtk`1
“ svtk ` κpθ ´ svtkqh` ξ

a

svtk
?
hZk`1

with tk “ kh, h “ T {n, may look natural. However, such a scheme clearly does not preserve positivity of
the process even if the Feller condition is fulfilled since

P
`

svt1 ă 0
˘

“ P

ˆ

Z1 ă
´v0 ´ κpθ ´ v0qh

ξ
?
v0

?
h

˙

ą 0.

This suggests to introduce the Milstein scheme which is quite tractable in one dimension in absence of
Lévy areas.

Milstein scheme and boosted Milstein scheme. The Milstein scheme of the stochastic volatil-
ity is given by

svtk`1
“Mb,σ

`

tk, svtk`1
, Zk`1

˘

where (see (3.4))

Mb,σpt, x, zq “ x´
σpxq

2σ1xpxq
` h

ˆ

bpt, xq ´
pσσ1xqpxq

2

˙

`
pσσ1xqpxqh

2

ˆ

z `
1

?
hσ1xpxq

˙2

with bpxq “ κpθ ´ xq, σpxq “ ξ
?
x and σ1xpxq “

ξ
2
?
x
. Consequently, under the Feller condition, the

positivity ofMb,σpt, x, zq is ensured if

x ě
σpxq

2σ1xpxq
ě 0, bpt, xq ě

pσσ1xqpxq

2
ě 0.

In our case, if the first condition holds as an equally since σpxq
2σ1xpxq

“
ξ
?
x

2 ξ
2
?
x

“ x the second one fails. But

pσσ1xqpxq

2
“
ξ
?
x ξ

2
?
x

2
“
ξ2

4

can be bigger than bpt, xq. To solve this problem, we consider the following κ-boosted volatility process

Yt “ eκt vt, t P r0, T s, (A.1)

which satisfies the stochastic differnetial equation

dYt “ eκt κθdt` ξ eκt{2
a

YtdĂWt.
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Remark A.1. Note that the the process pYtqtPr0,T s will have a higher variance but, having in mind a
quantized scheme, this has no real impact (by contrast with a Monte Carlo simulation).

Now, if we look at the Milstein discretization scheme of Yt

sYtk`1
“M

rb,rσ

`

tk, sYtk , Zk`1

˘

using the notation defined in (3.4) where drift and volatility term are now time-dependents and given by

rbpt, xq “ eκt κθ, rσpt, xq “ ξ
?
x eκt{2 and rσ1xpt, xq “

ξ eκt{2

2
?
x
.

Under the Feller condition, the positivity of the above scheme is ensured, since

rσpt, xq

2rσ1xpt, xq
“ x and

prσrσ1xqpt, xq

2
“
ξ2 eκt

4
ď rbpt, xq “ eκt κθ.

The last inequality is satisfied thanks to the condition ξ2

2κθ ď 1 ensuring the positivity of the scheme.

B Quadratic Optimal Quantization: Generic Approach
Let X be a R-valued random variable with distribution P

X
defined on a probability space pΩ,A,Pq such

that X P L2
RpΩ,A,Pq.

Let ΓN “ txN1 , . . . , x
N
Nu Ă R be a subset of size N indexed in an increasing order, called an N -

quantizer. Any such N -quantizer is in a bijective correspondence with the N -tuple x “ pxN1 , . . . , xNN qlying
in the simplex of RN . This leads us to sometimes replace ΓN by x.

The Voronoi partition pCipΓN qqi“1,...,N induced by ΓN in such a one-dimensional setting is defined
by

CipΓN q “
`

xNi´1{2, x
N
i`1{2

‰

, i P t1, . . . , N ´ 1u, CN pΓN q “
`

xNN´1{2, x
N
N`1{2

˘

(B.1)

where @i P t2, . . . , Nu, xNi´1{2 “
xNi´1`x

N
i

2 and xN1{2 “ ´8 and xNN`1{2 “ `8. Elements of the cell are
closer to xi than to any other xj (up the endpoints).

The Voronoi quantization of X induced by ΓN , denoted pXΓN or pXN when ambiguity, is defined as
the nearest neighbour projection of X onto ΓN based onto above Voronoi cells, namely

pXN “ ProjΓN pXq “
N
ÿ

i“1

xNi 1XPCipΓN q . (B.2)

The probability distribution of pXN (also know as weights) are given by

P
`

pXN “ xNi
˘

“ P
X

`

CipΓN q
˘

“ P
´

X P
`

xNi´1{2, x
N
i`1{2

‰

¯

.

To measure the adequacy of a grid to the distribution of X, one introduces the quadratic distortion
function at level N given by

Q2,N : x “ px1, . . . , xN q ÞÝÑ
1
2 E

”

min
iPt1,...,Nu

|X ´ xNi |
2
ı

“ 1
2 E

“

distpX,ΓN q
2
‰

“
1

2
}X ´ pXN }2

2
.

Of course, the above result can be extended to the Lp case. We briefly recall some classical theoretical
results, see [GL00, Pag18] for further details. The first one treats of existence of optimal quantizers.

Theorem B.1. (Existence of optimal N -quantizers) Let X P L2
RpPq and N P N‹.

(a) The quadratic distortion function Q2,N at level N attains a minimum at a N -tuple x‹ “ pxN1 , . . . , xNN q
and Γ‹N “

 

xNi , i P t1, . . . , Nu
(

is a quadratic optimal quantizer at level N .
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(b) If the support of the distribution P
X

of X has at least N elements, then x‹ “ pxN1 , . . . , x
N
N q has

pairwise distinct components, P
X

`

CipΓ
‹
N q

˘

ą 0, i P t1, . . . , Nu. Furthermore, the sequence N ÞÑ

infxPpRqN Q2,Npxq converges to 0 and is decreasing as long as it is positive.

Uniqueness of an optimal N -quantizer (defined as an N -tuple with increasing components), is due
to Truskin [Tru82] was shown in dimension one under log-concavity assumptions on the density of the
distribution P

X
of X.

In what follows, we will drop the ‹ subscript when speaking of optimal quantizers, x‹ and Γ‹N will be
replaced by x and ΓN .

The next result elucidates the asymptotic behavior of the distortion. We saw in Theorem B.1 that
the infimum of the quadratic distortion converges to 0 as N goes to infinity. The next theorem, known
as Zador’s Theorem, establishes the sharp rate of convergence of the quantization error (stated here in
the quadratic case).

Theorem B.2. (Zador’s Theorem) paq Sharp rate [Zad82, GL00]. Let X P Lp`δR pPq for some δ ą 0.
Let P

X
pdξq “ ϕpξq ¨ λpdξq ` νpdξq, where ν is singular with respect to the Lebesgue measure λ on R.

lim
NÑ`8

N min
ΓNĂR,|ΓN |ďN

}X ´ pXN }2 “
1
?

12

„
ż

R

ϕ
1
3 dλ


3
4

. (B.3)

pbq Non asymptotic upper-bound [GL00, Pag18]. Let δ ą 0. There exists a real constant C1,p P

p0,`8q such that, for every R-valued random variable X,

@N ě 1, min
ΓNĂR,|ΓN |ďN

}X ´ pXN }2 ď C1,pσ2`δpXqN
´1 (B.4)

where, for r P p0,`8q, σrpXq “ minaPR }X ´ a}r ă `8 is the Lr-pseudo-standard deviation.

To compute optimal quantizers, we first differentiate Q2,N, whose gradient is given by

∇Q2,Npxq “

ˆ

E
”

pxNi ´Xq1X P
`

xN
i´1{2

,xN
i`1{2

‰

ı

˙

i“1,...,N

. (B.5)

Then any critical point of Q2,N, in particular its minima, satisfies

∇Q2,Npxq “ 0 ðñ xNi “

E
”

X 1
X P

`

xN
i´1{2

,xN
i`1{2

‰

ı

P
´

X P
`

xNi´1{2, x
N
i`1{2

‰

¯ , i “ 1, . . . , N

ðñ xNi “
K
X

`

xNi`1{2

˘

´K
X

`

xNi´1{2

˘

F
X

`

xNi`1{2

˘

´ F
X

`

xNi´1{2

˘ , i “ 1, . . . , N

(B.6)

where K
X
p¨q and F

X
p¨q are the first partial moment and the cumulative distribution respectively, function

of X, i.e.
K
X
pxq “ E

“

X 1Xďx
‰

and F
X
pxq “ P

`

X ď x
˘

. (B.7)

Note equation (B.6) can be rewritten as the following so-called stationarity equation

E
“

pXN | X
‰

“ pXN . (B.8)

This equality in (B.6) is the starting point to the development of the first method devoted to the
numerical computation of optimal quantizers: the Lloyd’s method I. This fixed point method was first
devised in 1957 by S.P. Lloyd and published later [Llo82]. Starting from a sorted N -tuple xr0s and with
the knowledge of the first partial moment K

X
and the cumulative distribution function F

X
of X, the

algorithm, which is essentially a deterministic fixed point method, is defined as follows

x
N,rn`1s
i “

K
X

`

x
N,rns
i`1{2

˘

´K
X

`

x
N,rns
i´1{2

˘

F
X

`

x
N,rns
i`1{2

˘

´ F
X

`

x
N,rns
i´1{2

˘

, i “ 1, . . . , N. (B.9)
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In [Kie82], it has been shown that
`

xrns
˘

ně1
converges exponentially fast toward x, the optimal quantizer,

when the density ϕ of X is log-concave and not log-piecewise affine.
The convergence rate of this fixed point method can be improved e.g. by using Anderson acceleration

(see [And65] for the original paper and [WN11] for details on the procedure).
Other algorithms exist, such as, stabbed gradient descent, the Newton-Raphson zero search procedure

or its Levenberg-Marquardt variant which are deterministic procedures provided the density, the first
partial moment and the cumulative distribution function of X are known. Additionally, we can cite
stochastic procedures such as the CLVQ procedure (for Competitive Learning Vector Quantization) which
is a zero search stochastic gradient and the randomized version of the Lloyd’s method I. For more details,
the reader can refer to [Pag18, PY16].

Once the algorithm (B.9) has been converging, we have at hand the quadratic optimal quantizer pXN

of X and its associated probabilities given by

P
`

pXN “ xni
˘

“ F
X

`

xNi`1{2

˘

´ F
X

`

xNi´1{2

˘

, i “ 1, . . . , n. (B.10)
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