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Abstract

A major drawback of the Standard Heston model is that its implied volatility
surface does not produce a steep enough smile when looking at short matu-
rities. For that reason, we consider the Stationary Heston model where the
deterministic initial condition of the volatility process is replaced by its in-
variant measure. We show, based on calibrated parameters, that this model
produces a steeper smile for short maturities than the original Heston model.
We also present numerical procedure based on Product Recursive Quantization
for the pricing of exotic options (Bermudan and Barrier options).

Introduction

Originally introduced by Heston in [Hes93], the Heston model is a stochastic volatility model used

in quantitative finance to model the joint dynamics of a stock, denoted (St(x) )i=0, and its volatility,
denoted (v} )i=0 where v§ = = > 0 stands for the initial volatility at time ¢ = 0. Historically,
the initial condition of the volatility = is considered as deterministic and is calibrated to market
data like the other parameters of the model. This model received an important attention among
practitioners for two reasons: first, it is a stochastic volatility model, hence it introduces smile
in the implied volatility surface as observed in the market, which is not the case of models
with constant volatility, and second, in its original form, we have access to a semi closed-form
formula for the characteristic function which allows us to price European options (Call & Put)
almost instantaneously using the Fast Fourier approach (Carr & Madan in [CM99]). Yet, a
complaint often heard about the Heston model is that it fails to fit the implied volatility surface
for short maturities because the model cannot produce a steep-enough smile for those maturities
(see |Gatll]).

In [PP0O9] devoted to the computation by Langevin Monte Carlo simulation of stationary
regime of ergodic diffusion, the authors introduce as an example what they called the Stationary
Heston model: noting that the volatility process is ergodic with the Gamma distribution as
unique invariant distribution v = 7y(a, 8), where o and 5 depend on the structure parameters
of the volatility process, they assume the volatility evolves under this stationary regime rather
than starting at time 0 from a deterministic value. The couple asset-volatility in this Stationary
Heston model will be denoted (St(y), v )¢=0. Considering this avatar of Heston model is justified
(on simulated data) by more realistic implied volatility surfaces produced for short maturities
by the pricing of vanilla options. The resulting pricing method of path-dependent options turns
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out to be too slow for practical implementation and no attempt of calibration is performed.
The aim of this paper is two-fold: first emphasize on market data that the calibration of the
Stationary Heston model does fit implied volatility surface for short maturities in a satisfactory
way and then propose efficient numerical schemes based on cubature formulas (vanilla options)
and optimal quantization (American en path-dependent) to price derivatives in such a model.

The underlying idea is that replacing the initial condition of the volatility by the stationary
measure does not modify the long-term behavior of the implied volatility surface but does inject
more randomness into the volatility for short maturities. This tends to produce a steeper smile for
short maturities than the original model, which is the kind of behavior we are looking for. Later,
the short-time and long-time behavior of the implied volatility generated by such model has been
studied by Jacquier & Shi in [JS17]. Other extensions of the Heston model have been suggested
and extensively analyzed in order to reproduce the slope of the skew for short-term expiring
options: the Rough Heston model where the volatility satisfies a Voltera equation driven by a
“rough” Liouville process with H-Holder paths, H ~ 0.1 (see [JR16, (GJRSIS| [GJRI18, [CGP21],
GR19| for details on the model and numerical solutions).

In the beginning of the paper, we briefly recall the well-known methodology used for the
pricing of European option in the regular Heston model. Based on that, we express the price Iy

)

of a European option on the asset STV as

L =E[e7To(SY)] = E[f(})] (0.1)

where f(z) denotes the price of the European option in the regular Heston model with same
parameters but starting from vy = xz€ (0, 4+0). The last expectation can be computed efficiently
using quadrature formulas either based on optimal quantization of the Gamma distribution or
on Laguerre polynomials.

Once we are able to price European options, we can think of calibrating our model to market
data. Indeed the parameters of the model are calibrated using the implied volatility surface
observed in the market. However, the calibration of the Heston model is highly depending on
the initial guess we choose in the minimization problem. This is due to an over-parametrization of
the model (see [GR0O9|). Hence, when we consider the Heston model in its stationary regime, there
is one parameter less to calibrate as the initial value of the volatility is no longer deterministic.

In the second part of paper, we deal with the pricing of Exotic options such as Bermudan
and Barrier options. We propose a method based on hybrid product recursive quantization. The
“hybrid” term comes from the fact that we use two different types of schemes for the discretization
of the volatility and the asset (Milstein and Euler-Maruyama). Recursive quantization was first
introduced by Pages & Sagna in [PS15)]. It is a Markovian quantization (see [PPP04]) drastically
improved by the introduction of fast deterministic optimization procedure of the quantization
grids and the transition weights. This optimization allows them to drastically reduce the time
complexity by an order of magnitude and build such trees in a few seconds. Originally devised
for Euler-Maruyama scheme of one dimensional Brownian diffusion, it has been extended to
one-dimensional higher-order schemes by [MRKP18| and to medium dimensions using product
quantization (see [FSP18 [RMKP17, [CFGI8,I[CFG17, [PS20]). Then, once the quantization tree is
built, we proceed by a backward induction using the Backward Dynamic Programming Principle
for the price of Bermudan options and using the methodology detailed in [Sagl0], [Pagl8| based
on the conditional law of the Brownian Bridge for the price of Barrier options.

The paper is organized as follows. First, in Section |1} we recall the definition of the Heston
model and the interesting features of the volatility diffusion which bring us to define the Sta-
tionary Heston model. In Section [2| we give a fast solution for the pricing of European options
in the Stationary Heston model when there exists methods for the Heston model. Finally, once



we are able to price European options, we can define the optimization problem of calibration
on implied volatility surface. We perform the calibration of both models and compare their
induced smile for short maturities options. In Section |3, we propose a numerical method based
on hybrid product recursive quantization for the pricing of exotic financial products: Bermudan
and Barrier options.

1 The Heston Model
(

The Heston model is a two-dimensional diffusion process (Stx) ,UF )e=0 with ng) is the price of
the risky asset at time t, and vy the volatility at time t, depending on = > 0 the inital value of
the volatility. This two-dimensional process (St(x), vf)¢=0 is solution to the following Stochastic
Differential Equation

as;” = (r — q)dt + \/vFdW,
5@ LR (1.1)
dv{ = k(0 —vf)dt + f\/@dﬁvft
where
° ém) = 59 > 0 is the initial value of the price of the risky asset and v§ = x > 0 is the

deterministic initial condition of the volatility,

(W,W) is a two-dimensional correlated Brownian motion, with correlation p € [—1,1]
(correlation between the asset and the volatility),

r € R denotes the interest rate, and ¢ = 0 is the dividend rate,

6 > 0 the long run average price variance,

k > 0 the rate at which v reverts to 6,
e £ > 0 is the volatility of the volatility.

This model is widely used by practitioner for various reasons. One is that it leads to semi-
closed forms for vanilla options. The other reason is that it represents well the observed mid and
long-term market behavior of the implied volatility surface observed on the market. However, it
fails producing or even fitting to the smile observed for short-term maturities.

Remark 1.1 (The volatility). One can notice that the volatility process is autonomous thence
we are facing a one dimensional problem. Moreover, the volatility process is following a Cox-
Ingersoll-Ross (CIR) diffusion also known as the square root diffusion. Existence and uniqueness
of a strong solution to this stochastic differential equation has been first shown in [IW&I], if
x = 0. Moreover, it has been shown, see e.g. [LL11], that, if the Feller condition

€2 < 2k6 (1.2)

is in force, then for every x > 0, then there exists a unique solution (vf);>0 to the volatility
equation which satisfies
V=0, P(rf=+x0)=1 (1.3)

where 77 is the first hitting time defined by

75 =inf{t > 0| vf =0} where inf & = +00. (1.4)



Moreover, the CIR diffusion admits, as a Markov process, a unique stationary regime, charac-
terized by its invariant distribution, the Gamma distribution

v="(a,p) (1.5)

where

a=08 and j=2k/€. (1.6)

Based on the above remarks, the idea is to precisely consider the volatility process under
its stationary regime, i.e., replacing the deterministic initial condition from the Heston model
by a v-distributed random variable independent of (W, W) We will refer to this model as the
Stationary Heston model. Doing so, we inject more randomness for short maturities (¢ small)
into the volatility but also to reduce the number of free parameters to stabilize and robustify
the calibration of the Heston model which is commonly known to be overparametrized (see
e.g. [GR0O9]).

This model was first introduced by [PP09| (see also [[W8I], p. 221). More recently, [JS17]
studied its small-time and large-time behaviors of the implied volatility. The dynamic of the asset
price (St(u))tZO and its stochastic volatility (v})¢>0 in the Stationary Heston model are given by

ds;”
= (r — q)dt + A/vYdW,
St(y) ( q) t t (1.7)

dvy = k(0 —v))dt + f«/vfdﬂwft

where v§ ~ v = y(a, 8) with 8 = 2k/€%, o = 0. Other parameters S(gy), r and ¢ are the same
as those in ([1.1)) and the parameters p, 6, K, # and £ can be described as in the Heston model.

2 Pricing of European Options and Calibration

In this section, we first calibrate both Stationary Heston and Heston models and then compare
their short-term behaviors of their resulting implied volatility surfaces. For that purpose we
relied on a dataset of options price on the EURO STOXX 50 observed the 26th of September 2019
(see Figure . This is why, as a preliminary step we briefly recall the well-known methodology
for the evaluation of European Call and Put in the Heston model. Based on that, we outline
how to price these options in the Stationary Heston model. Then, we describe the methodology
employed for the calibration of both models: the Stationary Heston model and the Heston
model , both under the Feller condition , and then we discuss the obtained parameters
and compare their short-term behaviors.

2.1 European options pricing

The price of the European option with payoff ¢ on the asset S )

model, exercisable at time 7T is given by

, under the Stationary Heston

Io=E[e T p(si)]. (2.1)
After preconditioning by v{, we have
Io = B[ B[eTo(8{) | o(wh)]| = B £(5)] (2:2)

where f(v) is the price of the European option in the Heston model with deterministic initial
conditions for the set of parameters A(v) = (so,7,¢q,0,k,&, p,v).



Example 2.1 (Call). If ¢ is the payoff of a Call option then f is simply the price given by
Fourier transform in the Heston model of the European Call Option. The price at time 0, for a
spot price sg, of an European Call C(\(v), K,T) with expiry T and strike K under the Heston
model with parameters A(v) = (so,7,¢,0,k,&, p,v) is

CAW), K, T) = [T (SW — K),]
:e—’“T(E[S?)nS(TU)ZK]—K]E[ns(T,J)ZK]) (2.3)
=spe T PL(Av),K,T) — Ke " P(A\(v), K, T)

with Py (A(v), K,T) and Py(A(v), K,T) given by

1 1 [+ —iulog(K) Aw),u—1i,T
Pl()\(v),K,T)—+j Re( v A u—ET)
2 ) iu spelr—aT 5 4
1 1 [*T® e—iulog(K) ( ’ )
Py(A(v),K,T) = 5t Wfo Re(iuw()\(v),u,T)>du
where i is the imaginary unit s.t. i2 = —1, ¥(A(v),u,T) is the characteristic function of the

logarithm of the stock price process at time 7'. Several representations of the characteristic func-
tion exist, we choose to use the one proposed by [SST04, [Gat11l [AMST07], which is numerically
more stable. It reads

W(Aw) 0, T) = B[ | 500, 2]

_ oiullog(so)+(r—a)T) (0x& 2 ((n—ptui—d)T—2log(1—ge~)/(1-g))) (2.5)
% V€ 2 (h—pEui—d)(1—e~9")/(1—ge~ )
with
d=~/(ptui — k)2 — €2(—ui —u2) and g = (k— p€ui—d)/(k — pui + d). (2.6)

Hence, in , f(v) can be replaced by C’()\(v), K, T), which yields
I=E[e"T(SY —K),] =B [C(A(vg), K, T)]. (2.7)

Now, we come to the pricing of European options in the Stationary Heston model, using the
expression of the density of vy ~ ya, 8), (2.2) reads

400 ﬁa
l=Blieh] = | fope

Now, several approaches exists in order to approximate this integral on the positive real line.

e P g, (2.8)

e Quantization based quadrature formulas. One could use a quantization-based cubature formula
with an optimal quantlzer of vy with the methodology detailed in Appendlxﬁ Given that optimal
quantizer of size IV, ’Uo , we approximate Iy by IO

N
Iy =E = D (w0 P (8 = wy). (2.9)
i=1



Remarks 2.2. In one dimension, the minimization problem, that consists in building an optimal
quantizer, commute with affine transformations. Hence applying a affine transformation T to
an optimal quantizer at level N of a distribution p makes it an optimal quantizer of p o 77t
Thus , if we consider an optimal quantization XN of a standard normal distribution A° (0,1) then
W+ oXV is an optimal quantizer of A'(i,02) and the associated probabilities of each Voronoi
centroid stay the same.

In our case, noticing that if we consider a Gamma random variable X ~ «y(a, 1) then the rescaling
of X by 1/8 yields X/B ~ v(a, B). Hence, for building the optimal quantizer 3}’ of v§, we can
build an optimal quantizer of X ~ v(a, 1) and then rescale it by 1/8, yielding 5 = XN /B. Our
numerical tests showed that it is numerically more stable to use this approach.

In order to build the optimal quantizer, we use Lloyd’s method detailed in Appendix [B] to
X ~ 7v(a,1) with the cumulative distribution function F, (z) = P(X < z) and the partial first
moment K, (z) = E[X 1x<,] given by

_ Ia,z) B B & e~ .
Fulo) = INCOR R (@) = aki(x) Moy “7° (2.10)
FX (.CL‘) = KX (x) =0, otherwise.

where I'(a, ) = Sgc t®~Le~t dt is the lower incomplete gamma function. The distribution (weights)
of the optimal quantizer 5} is given by (B.10)

~N N oN N N N
]P (UO = UO,’Z) = ]P (X = ilfz' ) = FX ($i+1/2) — FX (l‘i—l/Q) (211)
, N alytal N _ N _
where, for every i € {2,..., N}, i1 5 and 1) 0 and TN 112 = +0

o Quadrature formula from Laguerre polynomials. One could also use an algorithm based on
fixed point quadratures for the numerical integration. Indeed, noticing that the density we are
integrating against is a gamma density which is exactly the Laguerre weighting function (up to
a rescaling). Then, Iy rewrites

+00 /Ba 1 8 501 +00

Iy = v)=——v* e PVdv = f fww(v)dv 2.12

) fa) ) ) (212)
where w(v) = v*~1e7P is the Laguerre weighting function. Then, for a fixed integer n > 1 (EI),
Iy is approximated by

Iy = Fﬁ(z);wz’f@i) (2.13)

where the v;’s are the associated Laguerre nodes and the w;’s their weights (EI)

2.2 Calibration

Now that we are able to compute the price of European options, we define the problem of
minimization we wish to optimize in order to calibrate our models parameters. Let P, be the
set of parameters of the Stationary Heston model that needs to be calibrated, defined by

7)SH = {¢ = (ea"{agvp) € IR,+ X R+ X IR,+ X[_l’ 1]} (214)

In practice, we choose n = 20. This number of points allows us to reach a high precision while keeping the
computation time under control.
During our numerical tests, we used the numerical integration routine gsl_integration_fized laguerre devel-
oped in the C++ gsl library. See https://www.gnu.org/software/gsl/doc/html/integration.html for more details
on the implementation.
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Figure 1: Implied volatility surface of the EURO STOXX 50 as of the 26th of September 2019.
(So = 3541, r = —0.0032 and q = 0.00225) The expiries T are given in days and the strikes K

i percentage of the spot.

and let P, be the set of parameters of the Heston model that needs to be calibrated, defined by
P, ={¢=(2,0,r¢p) € Ry xRy x Ry x Ry x[—1,1]}. (2.15)

The others parameters are directly inferred from the market: we get Sy = 3541, r = —0.0032
and g = 0.00225. Note that we did not directly included the Feller condition in the set of
parameters P, and P, since this constraint will be introduced in the loss function of the cali-
bration problem as a penalization (see further on). Indeed, preliminary calibration attempt tests
performed without constraints yielded parameters really far from fulfilling the Feller condition.
Which was inconsistent with the aim of pricing path-dependent or American style derivatives by
any method.

In our case, we calibrate to option prices having all the same maturity. The problem can be
formulated as follows: we search for the set of parameters ¢* € P that minimizes the relative
error between the implied volatility observed on the market and the implied volatility produced
by the model for the given set of parameters, such that P = P,,, for the Stationary Heston model
and P = P, for the Heston model. There is no need to calibrate the parameters sg, 7 and ¢
since they are directly observable in the market.

Being interested in the short-term behaviors of the models, it is natural to calibrate both
models based on options prices at a small expiry. Once the optimization procedures have been
performed, we compare their performances for small expiries. For that, we calibrate using only
the data on the volatility surface in Figure |I| with expiry 50 days (7" = 50/365) and then we
compare both models to the market implied volatility at expiry 22 days which is the smallest
available in the data set.

Remark 2.3. The calibration is performed in C+-+ on a laptop with a 2,4 GHz 8-Core Intel
Core i9 CPU using the randomized version of the simplex algorithm of [NM65] proposed in the



C++ library GSL. This algorithm is a derivative-free optimization method. It uses only the
value of the function at each evaluation point. The computation time for calibrating the Heston
model is around 20s and a bit more than a minute for the Stationary model. However, these
computation times need to be considered carefully because the calibration time highly depends
on the initial condition we choose for the minimizer and on the implementation of the Call pricer
in the Heston model.

Let us be more precise. We want to find the set of parameter ¢* that minimizes the relative
error between the volatilities observed in the market and the ones generated by the model while
enforcing the Feller condition. To take this constraint into account it appears that the most
convenient compromise was to introduce it as a penalization in the loss function to be minimized,
hence leading to the following problem

) O.I]\é[ark‘et(K7 T) _ O.I]\\/Jodel(gb, K, T) 2
min
geP 4= oMarket( K, T')

+ Amax (€2 — 2x6,0) (2.16)

where T is the expiry of the chosen options chosen a priori, K are their strikes and A > 0 is the
penalization factor to be adjusted during the procedure. oM@ %! (K T) is the Mark-to-Market
implied volatility taken from the observed implied volatility surface and the implied volatility
oMedel(¢ K, T) is the Black-Scholes volatility ¢ that matches the European Call price in this
model to the price given by Heston or Stationary Heston model with the set of parameters ¢.
The resulting parameters after calibration are summarized in Table [I} The Feller condition
is still not fulfilled for both models but it is not far from being satisfied. We choose A = 0.01
which seems to be right the compromise in order to avoid underfitting the model because of the

constraint.
¢ | » w0 s ¢
Heston | —0.83 0.0045 0.17023 2.19 1.04
Stationary Heston || —0.99 0.02691 19.28 1.15

Table 1: Parameters obtained for both models after calibration with penalization (A = 0.01) for
options with maturity 50 days (So = 3541, r = —0.0032 and q = 0.00225).

Figure [2] displays the resulting implied volatility curves at 50 days and 22 days for both
calibrated models and observed in the market with calibration at 50 days.
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Figure 2: Implied volatilities for 22 (left) and 50 (right) days expiry options after calibration at
50 days with penalization.



Now, we extrapolate the implied volatility of both models for very short term maturities
in Figure [3] The Stationary Heston model produces the desired smile, however the Heston
model fails to produce prices sensibly different than 0 for strikes higher than 105 with this set of
parameters, this is why there is no values in implied volatility curves.
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Figure 3: Implied volatilities for 7 (left) and 14 (right) days expiry options after calibration at
50 days with penalization.

From Figure [3] we can see that the Heston model fails at producing the desired smile for
very small maturities whereas the Stationary model meets no difficulty to generate it. Figure [4]
reproduces the term-structure of the implied volatility as a function of 7" in both models.
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Figure 4: Term-structure of the volatility as a function of T and K of both models (left: Heston
and right: Stationary Heston) after calibration at 50 days with penalization.

Figure |5| represents the relative error between the implied volatility given by the market and
the one given by the models calibrated models at 50 days using a penalization. The Heston model
completely fails to preserve the term-structure while being calibrated at 50 days. In comparison,
the Stationary Heston behaves much better and the relative error does not explodes for long-term
expiries, meaning that the long run average price variance is well caught.
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(left: Heston and right: Stationary Heston).

3 Toward the pricing of Exotic Options

In this Section, we evaluate first Bermudan options and then Barrier options under the Stationary
Heston model. For both products, the pricing rely on a Backward Dynamic Programming Prin-
ctple. The numerical solution we propose is based on a two-dimensional product recursive quan-
tization scheme. We extend the methodology previously developed by [FSP18, [CFGIS8, [CFGIT],
where they considered an Euler-Maruyama scheme for both components. In this paper, we con-
sider a hybrid scheme made up with an Euler-Maruyama scheme for the log-stock price dynamics
and a Milstein scheme for the (boosted) volatility process. Finally, we apply the backward algo-
rithm that corresponds to the financial product we are dealing with (the Quantized Backward
Dynamic Programming Principle for Bermudan Options, see [BP03, [BPP05, and the
algorithm by for Barrier Options based on the conditional law of the Brownian

motion).

3.1 Discretization scheme of a stochastic volatility model

We first present the time discretization schemes we use for the asset-volatility couple (St(y) ,uf )te[O’T].
For the volatility, we choose a Milstein on a boosted version of the process in order to preserve
the positivity of the volatility and we select an Euler-Maruyama scheme for the log of the asset.

The boosted volatility. Based on the discussion in Appendix [A] we will work with the
following boosted volatility process: Y; = e oY, t € [0,T] for some x > 0, whose diffusion is given
by

dY; = e kOdt + £ % \/Y,;dW,. (3.1)

The Milstein discretization scheme of Y; is given by

}_/Ttk+1 = Mg’g—(tkal_/;fk7zk+1) (32)
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with (Zg)g>1 is an i.i.d. sequence of standard normal random variables, t; = %k and b and &
are given by

éent/Q
2V

b(t,z) = e kb, 5(t,x) = &vre™?  and 5 (tx) = (3.3)

and M; ;(t, 7, 2) defined by

5(t,x) ~ (55t x)\  (55)(t x)h 1 2
ME’&(t,m,z)zm—W+h<b(t,x)— 5 > + 5 <Z+\/W> .
(3.4)

We made this choice of scheme because, under the Feller condition, the positivity of M; - is
ensured, since

2 2 Kt 2
- _ Kt S § € 2\/E 3.5
Mbﬁ(t,x,z) =he (/{9 1 ) +h 1 (z + \/Eﬁe’ftﬂ) (3.5)

and
€2 < 2k0 < 4k0.

Other schemes could have been used, see [AIf05] for an extensive review of the existing
schemes for the discretization of the CIR model, but in our case we needed one allowing us to
use the fast recursive quantization, i.e., where we can express explicitly and easily the cumulative
distribution function and the first partial moment of the scheme, which is the case of the Milstein
scheme (we give more details in Subsection .

Hence, as our time-discretized scheme is well defined because its positivity is ensured if
the Feller condition is satisfied, we can start to think of the time-discretization of our process

(St(:))k:e[[(),n]] :

The log-asset. For the asset, the standard approach is to consider the process which is the
logarithm of the asset X; = log(S;). Applying It6’s formula, the dynamics of X; is given by

dX; = (7« —q— %)dt + Vv dWs. (3.6)

Now, using a standard Euler-Maruyama scheme for the discretization of X;, we have

th+1 = gb,o’ (tka thvi_/;fka Z]]%Jrl) (3 7)

Vi = MB,?T (tk’ Y:fle%—i-l) .
where (Z}, Z2)g=1 is an i.i.d. sequence of bivariate normal random vectors with Z} ~ N(0,1),
Z2 ~ N(0,1), Corr(Z}, Z%) = p and

Evol(t,z,y,2) =x +b(t,z,y)h +o(t, x, y)\/ﬁz (3.8)

with
—kt

ey

5 and o(t,z,y) = e /2 VY- (3.9)

b(t,l‘,y) =r—q—-

11



3.2 Hybrid Product Recursive Quantization

In this part, we describe the methodology used for the construction of the product recursive
quantization tree of the couple log asset- boosted volatility in the Heston model.

In Figure [0 as an example, we synthesise the main idea behind the recursive quantization
of a diffusion v; which has been time-discretized with Fy(t,x,z). We start at time tg = 0 with
a quantizer ¥y taking values in the grid I'y, = {v?,...,0{;} of size 10, where each point is
represented by a black bullet () with probability p = P(%y = v?) is represented by a bar. In
the Stationary Heston model, Uy is an optimal quantization of the Gamma distribution given
by and . Then, starting from this grid, we simulate the process from time ¢y to time
t1 = 5 days with our chosen time-discretization scheme Fy(t,z, z), yielding v; = Fy(to, Vo, Z1),
where Z; is a standardized Gaussian random variable. FEach trajectory starts from point v?
with probability p?. And finally we project the obtained distribution at time t; onto a grid
[y, = {v},...,v]y} of cardinality 10, represented by black triangles (a) such that ¥ is an optimal
quantizer of the discretized and simulated process starting from quantizer 7y at time tg = 0.

Remark 3.1. In practice, for low dimensions, we do not simulate trajectories. We use the
information on the law of ¥ conditionally of starting from 7y. The knowledge of the distribution
allows us to use deterministic algorithms during the construction of the optimal quantizer of ¥;
that are a lot faster than algorithms based on simulation.

0.30

e Vv A v

. ! = P(T =) m—p} =P =vi)
0.25 1

>

0.20 V1 = Folto, Vo, Z1)

+~ 0.151
0.10 4

0.05 4

0.00 -
—0.005 0.000 0.005 0.010 0.015 0.020 0.025
t

Figure 6: Fxzample of recursive quantization of the volatility process in the Heston model for one
time-step.

In our case, we consider the following stochastic volatility system

dX; = b(t, X, Y)dt + o(t, X, Y;)dW,
(3.10)

dY; = b(t, Ye)dt + &(t, V)W,
where W, and W, are two correlated Brownian motions with correlation pe[—1,1], b and o are

defined in (3.9) and b and & are defined in (3.3). Our aim is to build a quantization tree of the
couple (X3, Y};) at given dates t, k = 0,...,n based on a recursive product quantization scheme.

12



The product recursive quantization of such diffusion system has already been studied by [CFG17]
and [RMKP17] in the case case where both processes are discretized using an Euler-Maruyama
scheme.

One can notice that building the quantization tree (}Afk) ke[o,n] approximating (Yy)epo,r) 18
a one dimensional problem as the diffusion of Y; is autonomous. Hence, based on our choice
of discretization scheme, we will apply the fast recursive quantization (detailed above in Fig-
ure [6) that was introduced in [PSI5| for one dimensional diffusion discretized by an Euler-
Maruyama discretization scheme and then extended to higher order schemes, still in one dimen-
sion, by [MRKP18|. The minor difference with existing literature is that, in our problem, the
initial condition yo is not deterministic. R

Then, using the quantization tree of (Y )ie[o,n) we will be able to build the tree (Xi)ie[o,n]
following ideas developed in [FSP18, RMKP17, ICFG18, [CFG17]. Indeed, once the quantization
tree of the volatility is built, we are in a one-dimensional setting and we are able to use fast
deterministic algorithms.

An estimate of the L?-error induced by the above “hybrid” product recursive quantiza-
tion approximation scheme has been established in [Mon20], Chapter 5. Classical results on
quantization-based schemes on the L2-error, showed in [FSP18|,[PS20], do not apply here. These
estimates rely on Lipschitz continuity propagation of the semi-group induced by the scheme which
is not satisfied here (du to presence of a square root in the diffusion term of the volatility in
the CIR model (3.2)). The upper-bound obtained in [Mon20] should be considered with caution
because it does not go to 0 when the number of time-steps goes to infinity. However, in practice,
the number of time-steps is fixed and we study the behavior as a function of Ny ; and N ;.

3.2.1 Quantizing the volatility (a one-dimensional case)

Let (Y3)se[o,r] be a stochastic process in R and solution to the stochastic differential equation
dY, = b(t, Y,)dt + &(t, Yy)dW, (3.11)

where Y has the same law than the stationary measure v: £(Yp) = v. In order to approximate
our diffusion process, we choose a Milstein scheme for the time discretization, as defined in
and we build recursively the Markovian quantization tree (Yy, )refo,n] Where Yy, ., is the Voronoi

quantization of f@k ., defined by

~ ~ 5 ~ _ ~
Ytk+1 = Maa (tka Ytk) Zk;-t,-l)a }/tk-kl = PI‘OJF%Q i1 (}/;'k-%—l) (312)

. . . . . Y k41 k .

and the projection operator PTOJF§2’k+1 (+) is defined in (B.2), I“NM+1 = {y1+ ,...,yNQ’kH} is

the grid of the optimal quantizer of EN/tkH and Z,% ~ N(0,1). In order alleviate the notations,

+1
we will denote Yy and Y} in place of Y}, and Y, .

The first step consists in building }/}0, an optimal quantizer of size Np g of Yp. Noticing that
Yy = vy, we use the optimal quantizer we built for the pricing of European options. Then, we
build recursively (Yi)g—1,..n, where the Ny j-tuple are defined by yiNQk = (y’f, e ,yfvlk), by
solving iteratively the minimization problem defined in the Appendix [B|in , with the help

13



of Lloyd’s method I. Replacing X by EN/kH in yields

Yk+1 € C (F%Q k+l) :|

P (Vi e C(TY,,.))

E [Mgﬁ (tr, Vi, 22, ) 1

(3.13)

M~~(tkykvzz+1) €Cj ( TN, k+1) ]

P (M (tk;ayka Zi,) € (Fsz k+1)>

Now, preconditioning by }A/k in the numerator and the denominator and using pf =P (}A/k = yf),
we have

E ]E[ > (T 7}/} 7Z2 1 i}]:|
yk’-i—l _ { Mb’a( ok k+1) Mi s (t"’Yk’ZkH)EC ( No k+1) Y
J
IE |:IP (M (tkaykv k+1) € Cj ( No, k+1) ’ Yk>j|
No i,
B | My (., Z20) 1 |#
Z Mb,a( kyYi k+1) M 5 (tk,y Zk+1)EC ( N2 k+1) P

No (3.14)
Z ( tkvwak:—&-l) €Cj (PN2 k+1)>p§

.

( ;Cill/2 Kk( ;CJF11/2)>10§c

k+1 k(,k+1 k
( i 311/2 — 5 (yjj1/2))pi

where C} (F%Q k+1) ( ;”11/2, Yin /2] is defined in (B.1). FF and KF are the cumulative distri-

bution function and the first partial moment function of UF ~ pf + xF(Z] at A2 respectively
with

HMZHMZ

pose k
/i]? _ (O'Ué)(tk,yj)h )\k _ 1
7 T VhE (e, yh)
x ? J

i 2
(G5%) (t yf))

(3.15)
+ h<5(tk, yh) - :

U(tka yk)
and oy =gy - ool
20$(tk7 y])

The functions Fik and K f can explicitly be determined in terms of the density and the cumulative
distribution function of the normal distribution.

Lemma 3.2. Let U = pu + w(Z + N)?, with p, s, A€ R, A =0, K >0 and Z ~ N(0,1) then the
cumulative distribution function F, and the first partial moment K, of U are given by

FU(‘T) = (Fz($+) - Fz(x_)) ]l:z:>p
5 =% =2 3.16
K, (x) = (FU($)(M+K()\2+1)) +E<$7 e 2 —x, e_2>> Loy (3.16)

where x, = A/ =X\, x_ = —/=H — X and F, is the cumulative distribution function of Z.

Finally, we can apply the Lloyd algorithm defined in Appendix [B.9|with F'; and K defined

by
Ng’k NQ,k

= Z pEFE@)  and K (z) = Z Pt KF (). (3.17)
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In order to be able to build recursively the tree quantization (f/k)kzo,...,n, we need to have
access to the weights pf =P (Yk = yf), which can be themselves computed recursively, as well
.. e S k S
as the conditional probabilities pf’j =P (Yk+1 = yjH | Yy = yf)

Lemma 3.3. The conditional probabilities pfj are given by
k(, k+1 k(,k+1
pm =F;( g+1/2) — I (%‘-1/2)’ (3.18)
And the probabilities pkH are given by

N i
pitt = 2 PiDl;- (3.19)

Proof. The
w1 =Y Y = o))

(
(MZ,&(tk"kaZk—i-l) e Ci(TN, ) | Vi = yf)
(

Mg (tkyyzaZkJrl) € Cj ( Na k+1)>

k+1 ) Fk( k+1 )

y]+1/2 %

] 1/2
and

Nok No
= G =) = 30 (o =287 1T =at) P G =) = 3ot

O

As an illustration, we display in Figure [7] the rescaled grids obtained after recursive quan-
tization of the boosted-volatility, where 7, = e Yk and (Yk)k 1,...n are the quantizers built
using the fast recursive quantization approach.

3.2.2 Quantizing the asset (a one-dimensional case again)

Now, using the fact that (Y;); has already been quantized and the Euler-Maruyama scheme of
(X1)t, as defined (3.8), we define the Markov quantized scheme

th+1 = gb,d (tka thv }/t]w Zé{»l)v th+1 - PrOJI‘X

N1 k41

(Xte.s) (3.20)

where the projection operator Projpx (+) is defined in (B.2), I‘%Lkﬂ is the optimal Ny ;41-

Nik+1
quantizer of th“ and Zk,Jr1 ~ N(0,1). Again, in order to simplify the notations, th and )A(tk
are denoted in what follows by X 1 and X k-
Note that we are still in an one-dimensional case, hence we can apply the same methodology
as developed in Append1x and build recursively the quantization (X k) o detailed above,
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k
i

Probability p!

0.00 0.05 0.10 0.15 0.20 0.25
Quantizer §, |

Figure 7: Rescaled Recursive quantization of the boosted-volatility process with its associated
weights from t = 0 to t = 60 days with a time step of 5 days with grids of size N = 10. The
recursive quantization methodology is applied to Yy and then we display the rescaled volatility

p = e "R Y.

where the Nj p-tuple are defined by x’f:Nl . (m’f, . "Tﬁ\h,k)' Replacing X by )Z'k in yield

B & (ths Xty Vi Zh01) 1 I ]
Ebo (thr Xtys Yirs Ziy1) gbyo(tk,th,mk,Z;H)ecjl(rﬁl’kﬂ)

$l§+1 _
: P (gb’g (tk’th’}/tk’ ZI%Jrl) € le (F%Lk+1))
N1,k Naog
]E[ ook gk 7l )1 ]k
ilz_l izz_l gb,a( ks Liys Yiy k+1) 5b,a(tk7xf1»yf27zé+1)ECj1 (Fﬁl,kJrl) Py io)
- Ny x Nog
DY 3.21
Z Z P <gbv‘7 (tk’vayz]‘z? Zli+1) € Cj, (F])\(fl,kﬂ)) p]{i17¢2) ( )
i1=112=1

k

k Nak
k k+1 k k+1
Z K(il,ig) ('le—i-l/Q) - K(il,iz) (xj1—1/2)> p(il,ig)
ig=1
& Nok

Nl’
ilz—l

Nl,
Z (F(]EI;Z'Q) (xf;rll/Q) - F(]zlyiQ) ($5j51/2)> p’(cil,lé)

i1=112=1

and K

(i1,ip) TC the cumulative distribution

k 1 k
(il,ig) + Zk+1o-(i17i2)

k % E v k k
where Plinsin) = P (Xk =x;, Vg = yiz) and F(Z.M.Q)
function and the first partial moment function of the normal distribution pu
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and they are defined by

k
T P
F(Izl,iQ)(l‘):FZ< - (1 2)>

9 (i1 ia)

. _ (3.22)
k k T Pigig) k ~ Plivia)
K(ilﬂé)(x) = 'Lb(ilﬂ'Q)FZ( k ) + U(im'Q)KZ( k )
(i1,i2) (i1,i2)
with
u’&hiz) = xfl + b(tg, xfl,yfz)h and 0@172-2) = a(tk,xfl,yfg)\/ﬁ (3.23)

and F, and K, are the cumulative distribution function and the first partial moment of the
standard normal distribution.
Finally, we apply the Lloyd method defined in Appendix with F, and K, defined by

Ny Na g Ny i Nojk
Z Z p(ll,ZQ 11,12)( ) and 2 2 p(ZMQ (11712)(1}). (324)
i1=11i2=1 i1=112=1

The sensitive part concerns the computation of the joint probabilities p’(“i1 i) Indeed, they
are needed at each step in order to be able to design recursively the quantization tree.

Lemma 3.4. The joint probabilities p”(“i1 i) 7€ given by the following forward induction

]17]2

Ny i Na
kH Z Z p(zl,zg Xk+1 = a: N A yj2 | X = x“,Yk yi) (3.25)

where the joint conditional probabilities PP (Xk+1 = x; + Yk 1= y]H | Xk = ﬂzk f/k = yl";) are
given by the formulas below, depending on the correlatzon

o if (Dorr(Z,iH,Z,%H) =p=0

~ k ~
]P (Xk+1 = le-’_17Yk+1 = y]+1 ‘ Xk - ‘T117Yk = ylg) = plg]g |:N (xfl,iQ,j1,+) _N(wflyi%jl:*)]’

(3.26)
where pi-‘;jz is defined in (3.18]) and
k+1 k k+1 k
i — " —ub.
k n—=1/2  M(isie) k 12 (i)
Tiisdi— = o Tiiagis = (3.27)
or. . ok .
(i1,i2) (41,i2)

with u’&hb) and a(l i2) defined in .
o if Corr(Z}, 1,27 ) =p#0
P(Xpp1 = w?fl,? = Z/JJr1 | Xy =af Yy = yb)
=P (Zli+1 € (45, igujs—r T ig it s Zir1 € (\/ Uiy o — A \ Uiy ot — )‘k]
+P (Zli-&-l € (‘T'Z,ig,jl,fﬂxi’i,iz,ﬁ#]’ Zi € [_ \/yi,j2,+ Ny M‘ /\5‘62))

(3.28)
where . . . .
Yjo—1/2 — Hia % Yipa1/2 — Hiy
Yig,jo,— = 0v QTa Yig jo,+ = 0v ZT, (3.29)
12 io

with M%; ﬂfQ and )\g defined in (3.15]).
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Remark 3.5. The probability in the right hand side of (3.28)) can be computed using the
cumulative distribution function of a correlated bivariate normal distributionﬂ Indeed, let

Fy(x1,22) = P(X1 < 21, Xo < 29)

the cumulative distribution function of the correlated centered Gaussian vector (Xi, Xs) with
unit variance and correlation p, we have

P (X € [a,b], Xs € [¢,d]) = Fp(b,d) — Fy(b,¢) — Fy(a,d) + F,(a,c) (3.30)

with a,c > —oo and b,d < 400.

Proof.
k+1 v _ k1 S _ o k+1
D1 42) =P (Xk+1 =T Y1 = Yo )
Ny No g
v k+1 k+1 | ¥ k v k v k 1 k
= P ( Xy =25 Y =y, | X =2, Y = yj) P (Xk =25, Y = us)
i=1 j=1
Nik Nog

k _ k1 R+l v ok Lk
P (Xps1 = i Y =y | X = a5, Yy = Y-

=
—~

-
=

.
¥
<

o if Corr(Z,iH,Z,%H) =p=0

% k+1 k+1 | ¥ k k
P (Xpy1 =25 Yy =y, | Xoo = 20, Y = )

_ ok o ktl Y _ kO _ .k

= Diy P (Xpyr = 257 | Xip = 23, Vi = v)

_ .k e k+1 k+1 v _ .k v _ .k
= Pisjo P (Xk+1 € (ﬂUjl_l/gafﬂle/g] | Xy = @y, Y = yi2>
_ .k E .k ol k+1 k+1

= Diyj, P <5b,<f (tkv Li1» Yig> Zk+1) € ($j1—1/2’$j1+1/2]>

_ .k k k
= Piyjo [N (xi17i27j1,+) -N (xilyiQ:jlﬁ)]’
o if Corr(Z} \, Z%, ) =p#0
v k+1 < k+1 v k k
P(Xjt1 = ﬂfjf Y1 = yj2+ | X =2, Ve = up)
_ k ok ol k+1 k+1 N k2 k+1 k+1
=P <5b,g(tk7xi1,y¢2, Zip1) € (25,70 250 o] My 5 (b Uiy Zicyn) € (yj2—1/2’yj2+1/2]>
_ k k 1 k+1 k+1 k k 2 k\2 k+1 k+1
=P (“(il,iz) + 0(iyi5) L1 € (xj1—1/2’$j1+1/2]’“i2 + ki (i1 T A,)7 € (ng—l/Q’yj2+1/2])
1 k k 2 k \2 k k
=P <Zk+1 € (xilyiQ:jL*’xi17i27j17+]7 (Zk+1 + /\i2> € (yinz,*’ yiz:h#]

_ 1 k k 2 k k k k
=P (Z,m € (i iz g1, T izt ) Dkt € (\/ Yinsjo,— — Mio> A Yiz o+ — )‘iz]
1 k k 2 k k k k
+P (Zk+1 € (T iz 1= Tz it ] Dhst € [_ V Vi o+ — Mo T\ Vi o, — )‘i2)>‘

O

3C++ implementation of the upper right tail of a bivariate normal distribution can be found in John Burkardt’s
website https://people.sc.fsu.edu/” jburkardt/cpp_src/toms462/toms462.html.
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Remark 3.6. Another possibility for the quantization of the Stationary Heston model could be
to use optimal quantizers for the volatility at each date t, in place of using recursive quantization.
Indeed, the volatility (v;); being stationary and the fact that we required the volatility to start
at time 0 from the invariant measure, we could use the grid of the optimal quantization vy of size
N of the stationary measure with its associated weights for every dates, hence setting 0y = 7.
We need as well the transitions from time t; to tx,1 defined by
P (Dpr1 = o5 | B = ). (3.31)
These probabilities can be computed using the conditional law of the CIR process described
in [CLJR05) [And07|, which is a non-central chi-square distribution. Then, we would build the
recursive quantizer of the log-asset at date )A(kﬂ with the standard methodology of recursive
quantization using the already built quantizers of the volatility v and the log-asset X ¢ at time
tk, i.e. N R R N
Xpy1 = gb,a (tk’anai}\k‘v Zl%-&-l) and Xp,1 = Projrﬁl . (Xk-i-l) (3.32)

where, this time, the Euler scheme is not defined as a function of the boosted-volatility but
directly as a function of the volatility and is given by

Ebo (t, z,v, z) =+ h(r —q— g) + vovhez. (3.33)

However, the difficulties with this approach come from the computation of the couple tran-
sitions R R
P (Xk;+1 = x?ﬁ'l,ﬁkﬂ = vfjl | Xk = xfl,z’)\k = vf;). (3.34)
Indeed, these probability weights would not be as straightforward to compute as the methodology
we adopt in this paper, namely using time-discretization schemes for both components. Our
approach allows us to express the conditional probability of the couple as the probability that
a correlated bi-variate Gaussian vector lies in a rectangle domain and this can be easily be
computed numerically.

3.3 Backward algorithm for Bermudan and Barrier options

Bermudan Options. A Bermudan option is a financial derivative product that gives the right
to its owner to buy or sell (or to enter to, in the case of a swap) an underlying product with a
given payoff ¢ (-, -) at predefined exercise dates {tg,- - ,t,}. Its price, at time ¢y = 0, is given by

sup | E [e—” r(Xr, Yy) | Fro ]

Te{to, ,tn

where X; and Y; are solutions to the system defined in (3.10|).

In this part, we follow the numerical solution first introduced by [BPP05, BP03|. They
proposed to solve discrete-time optimal stopping problems using a quantization tree of the risk
factors X; and Y;.

Let FXY — (F)o<k<n the natural filtration of X and Y. Hence, we can define recursively
the sequence of random variable LP-integrable (V})o<k<n

{Vn = eirtn Qpn(Xn, Yn)a

3.35
Vio = max (e ™% ¢y (X, Vi), B[Vis1 | Fi]), 0<k<n-—1 (3.35)

called Backward Dynamic Programming Principle. Then

Vo = sup { Ele™ ¥ (X;,Y;) | Fol, 7€ @o,n}
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with ©g ,, the set of all stopping times taking values in {tg,--- ,t,}. The sequence (Vi)o<k<n 1S
also known as the Snell envelope of the obstacle process (e*”k Ui (X, Yk))osk;gn' In the end,
E[Vp] is the quantity we are interested in. Indeed, IE[Vp] is the price of the Bermudan option
whose payoff is 15, and is exercisable at dates {t1,--- ,t,}.

Following what was defined in , in order to compute E[Vp], we will need to use the
previously defined quantizer of X and Yj: )?k and 5’}/@ Hence, for a given global budget N =
Ni,oN2g+-- -+ NipnNay, the total number of nodes of the tree by the couple (Xk, Yk)0<k<n, we
can approxunate the Backward Dynamic Programming Principle - by the following sequence
involving the couple (X ks Yk)0<k<n

ﬁn =e " n Xmi}n )
{ Yl ) (3.36)

Vi = max (e "% ¢ (Xi, Vi), E[Vis1 | (Xi, Yi)]),  k=0,....,n—1.
Remark 3.7. A direct consequence of choosing recursive Markovian Quantization to spatially
discretize the problem is that the sequence (Xk, Yk)0<k<n is Markovian. Hence (Vk)0<k<n de-

fined in Aobeylng a Backward Dynamic Programming Principle is the Snell envelope of
(e*”k wk(Xk, Yk>)0<k<n' This is the main difference with the first approach of [BPP05, [BP03],

where in there case they only had a pseudo-Snell envelope of (e*”k Ui ()’(\'k, ?’f))o <k<n

Using the discrete feature of the quantizers, (3.36|) can be rewritten

~ n o ,n\ _ —Tin n o .n ilzlv"-aNl,n
On (77, Y1) = e V(2,5 Yiy ), ig = 1, No,
Nik+1 Nojkt1 k=0,....n—1
51@(95?17%@) = maX( Tl Vi ( u,le Z 2 (“712 (1 Jg)vkﬂ( kHayf;l)), i1 =1,..., N
n=1 ja=1 g =1,...,Noy
R R (3.37)
where 77@1,1'2)7(]'1,3'2) =P (Xk+1 = xfjl,YkJr y]2 A Xk = “,Yk = yg) is the conditional

probability weight given in (3.28)). Finally, the approximation of the price of the Bermudan
option is given by

N3 o
E [Go (w0, Yo)] = > pito(xo, 1Y) (3.38)
izl

with p; = P (ffo = y?) given by .

Barrier Options. A Barrier option is a path-dependent financial product whose payoff at
maturity date T' depends on the value of the process Xp at time 71" and its maximum or minimum
over the period [0,T]. More precisely, we are interested by options with the following types of
payoff h

h = f(X7) Lsup,cgo 1y Xeel} or  h=f(X7) Liint, o0 XeeD) (3.39)

where [ is an unbounded interval of R, usually of the forme (—oo, L] or [L, +00) (L is the barrier)
and f can be any vanilla payoff function (Call, Put, Spread, Butterfly, ...).

In this part, we follow the methodology initiated in [Sagl0] in the case of functional quan-
tization. This work is based on the Brownian bridge method applied to the Euler-Maruyama
scheme as described e.g. in [Pagl8|. We generalize it to stochastic volatility models and product
Markovian recursive quantization. X; being discretized by an Euler-Maruyama scheme, yielding
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X with & = 0,...,n, we can determine the law of maXe[0,7] X; and minge[o,7] X; given the
values X = xk,Yk =y, k=0,.

L ( max Xy | X = o5, Y = yp, k=0, . .. ,n) =L (k:max (Glg:ck,yk),xkﬂ)_l(Uk)) (3.40)

te[0,T] 0yeeyn—1
and
- _ k -1
L (tg[%)lr%] X | X =25, Ve =y, k= 0,... ,n) =L (k:&%ﬁ—l (F(l’kayk)vxk+1) (Uk)> (3.41)

where (Uk)k=o,. n—1 are i.i.d uniformly distributed random variables over the unit interval and
(G¥ ) )7t and (FF » )~1 are the inverse of the conditional distribution functions G’(“x ). and

k(x’y @y ),
Fon,e defined by
& _an
G(af;,y),z(u) = (1 — € To=(tg,z,y) ) ]l{u>max(z7z)} (342)
and
k W
Bl (w) =1 (1 ey ) 1 fy<min(e.2)} - (3.43)

Now, using the resulting representation formula for E f(Xr, maXye[o,7] X;) (see e.g. [Sagl0,
Pagl1§|), we have a new representation formula for the price of up-and-out options Pyo and
down-and-out options Ppo

Pyo = e TB[f(X0) Lo 1y xier ] = ¢ " TE | f [ H T XHI(L)} (3.44)

and

D —rT Y —rT n
Ppo = ¢ T B[£(X1) Ling, o 1 x50 ] = © ]E[ H ( Fie o XM(L))] (3.45)

where L is the barrier.

Finally, replace X, and Y} by Xk and Yk and apply the recursive algorithm in order to
approximate Pyo or Ppo by E[Vo] or equivalently E[vg(xq, Yg)]

Vo =e T f(X,),
{A" 7t "Z .. IR (3.46)
Vi = B [gr(Xk, Vi, X 1) Vi1 | (X, Vi), 0<k<n—1
that can be rewritten
~ T i=1,..., Ny,
’Un(xgll’y’g>:e " f(x?)7 j:]-w-'uNQZ
Nik+1 Nogt1 k=0,...,n—1
~ k k k .
Vk 21,,%2 2 Z (“ i2),(j1 ]2)vk+1( 7y_72+1)g ( 7,17y127 ]1+1>7 1= 1, ey N].,k‘
Jji=1 jo=1 j:]-a“'uNQ,k
(3.47)

with 71'(Z1 i), (j1,j2) =P (Xk+1 = x Yk+ = y]2 1 Xk = x“,Yk =y ) the conditional proba-

bilities given in and gi(x,y, z) is either equal to G( V). (L) or 1 — F(k;: ).z (L) depending
on the option type Flnally, the approximation of the price of the barrier option is given by

Na o
E[Vo] = E [o(wo, Y0)] = 2 i Do (w0, 3Y) (3.48)
i=1

with p; = P (170 = y?) given by .
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3.4 Numerical illustrations

In this part, we deal with numerical experimentsﬂ in the Stationary Heston model. Throughout
this section we implement the recursive quantization algorithm with size n (the number of time
steps) and quantization grids of constant size: for all £ = 0,...,n, we take Nj, = N; and
Ny i, = Na where n is the number of time steps. First, we use the European options framework
to numerically evaluate the errors of recursive quantization as a function of quantization grids
sizes. Then, we evaluate Bermudan options and Barrier options.

Impact of N;, No and n. In this paragraph, we want to evaluate the impact that have
the tree parameters N1, Ny and n on the accuracy of the prices computed by product recursive
quantization. For that purpose, we consider pricing of European options in the Stationary Heston
model with parameters given in Table |I| (obtained after the penalized calibration procedure).
We set Sg = 100 in order to get prices of an order we are used to. The benchmark prices of 10
European options with various strikes K: 5 calls and 5 puts, all in-the-money, with maturity ¢, =
T = 0.5 (6 months) are computed using the quadrature formula based on Laguerre polynomials as
explained in Section[2] At this point let us emphasize that we are aware that neither quantization
nor Monte Carlo should be used in practice to compute premia of Eropean options in a Heston
model.

In place of using the backward algorithm (3.36]) (without the max function) for computing
the expectation at the expiry date, we use the weights p’éhm defined in and computed by
a forward induction, in order to use the quantization based cubature formula

A N1 No
E[¢n(Xn, Ya)] = Y0 D7 n(@l, y2 )0, )- (3.49)
i1=112=1

The results are reported in Tables [2| and [3| The relative error induced by the quantization-
based approximation is given between brackets. The computation time is split into the time
taken to construct the tree and the pricing time (Equation (3.4))).

First, we compare in Table [2] the prices for a fixed number of time-steps: n = 180 and we
make vary the parameters Ny and No. Then in Table 3| we fix (N7, N2) = (50,10) and make n
vary.

We notice from Table [3| that the error is mostly explained by the number of the time-steps
n. By comparison, a Monte-Carlo pricer with M = 300,000 paths reaches the same order of
precision than our quantization tree with (Ni, N2) = (100,10) and n = 180 in 3.3s. Once the
quantification tree is built, the price calculation is extremely fast and if we compare it with the
Monte Carlo estimator we have a ratio of 3.3/0.173 ~ 19 in calculation speed. Note also that it
is much more efficient to store the quantization tree than to store all the paths of a Monte Carlo
estimator.

4All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8~Core Intel Core i9 CPU.
The computations of the transition probabilities are parallelized on the CPU.
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(N1, Vo)

| K Benchmark (20,5) (50, 10) (100, 10) (150, 10)
80 20.17 19.71 (2.2%)  20.01 (0.8%)  20.07 (0.50%) 20.09 (0.42%)
85 15.56 15.01 (3.5%)  15.38 (1.14%)  15.45 (0.70%) 15.46 (0.60%)
Call | 90 11.24 10.64 (5.3%)  11.06 (1.58%) 11.13 (0.92%) 11.15 (0.77%)
95 7.383 6.825 (7.5%)  7.233 (2.02%) 7.314 (0.93%) 7.331 (0.70%)
100 4196 3.769 (10.1%) 4.110 (2.06%) 4.196 (0.01%) 4.215 (0.44%)
100 4469 4167 (6.75%) 4.402 (1.48%) 4.455 (0.31%) 4.464 (0.10%)
105 7171 7.031 (1.96%) 7.177 (0.08%) 7.234 (0.86%) 7.243 (0.99%)
pyt | 1O 10.86 1081 (0.39%) 10.90 (0.36%) 10.95 (0.87%) 10.96 (0.93%)
115 1538 15.39 (0.10%) 15.38 (0.005%) 15.41 (0.24%) 15.42 (0.26%)
120 20.30  20.39 (0.43%) 20.29 (0.08%) 20.27 (0.17%) 20.27 (0.17%)
| Time 1.7s +5ms  16.5s + 30ms  81s + 173ms  186s + 406ms

Table 2: Comparison between European options prices, with maturity T = 0.5 (6 months), given
by quantization and the benchmark, as a function of the strike K and (N1, N2) where we set
n = 180. Relative error in percent between brackets.

‘ K Benchmark 30 60 90 180
80 20.17 20.01 (0.82%) 20.04 (0.67%) 20.03 (0.68%) 20.01 (0.8%)
85 15.56 15.33 (1.44%) 15.39 (1.07%) 15.40 (1.02%) 15.38 (1.14%)
Call | 90 11.24 10.95 (2.58%) 11.04 (1.74%) 11.06 (1.54%) 11.06 (1.58%)
95 7.383 7.047 (4.55%) 7.174 (2.82%) 7.211 (2.32%) 7.233 (2.02%)
100 4.196 3.883 (7.46%) 4.021 (4.16%) 4.066 (3.09%) 4.110 (2.06%)
100 4.469 4.161 (6.88%) 4.305 (3.65%) 4.356 (2.52%) 4.402 (1.48%)
105 7.171 6.969 (2.81%) 7.080 (1.27%) 7.125 (0.64%) 7.177 (0.08%)
Put 110 10.86 10.81 (0.45%) 10.85 (0.09%) 10.86 (0.08%)  10.90 (0.36%)
115 15.38 15.38 (0.04%) 15.38 (0.01%) 15.38 (0.04%) 15.38 (0.005%)
120 20.30 20.28 (0.10%) 20.28 (0.12%) 20.29 (0.09%) 20.29 (0.08%)
‘ Time 3.6s + 30ms 6.5s + 30ms 9s + 30ms 16.5s + 30ms

Table 3: Comparison between FEuropean options prices, with maturity T = 0.5 (6 months), given
by quantization and the benchmark, as a function of the strike K and of the number n of time-
steps where we set (N1, Na) = (50,10). Relative error in percent between brackets.

Bermudan options. For Bermudan options, we do not use the parameters we calibrated in
subsection [2.2] because the interest rate and the dividend rate are very close to 0. Hence the
prices of Bermudan options with those parameters are equal to Furopean ones. In place we use
the parameter set No.5 defined in [FO11] which is a set of parameters commonly used in the

financial literature for the pricing of Bermudan options that we recall in Table [4]
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| p 0 K & S r qf
| —0.64 0.0348 1.15 0.39 100 0.04 O |

Table 4: Test set No.5 from [FO11).

Moreover, for the Bermudan Put we will use its European price as a control variate. This has
to be compared to including the payoff function into the regression basis at each time-steps in
regression-projection methods “a la Longstaff-Schwarz”. The Backward Dynamic Programming
Principle becomes

V, =0,
~ ~ (3.50)
Vi, = max (e gy (Xp, Vi) — CEYy (%), E[Viyr | Fil),  0<k<n-—1,

where CFY(z) is the European price for maturity ¢ with initial stock price z in the Stationary
Heston model (see [BPP05| for more details). Finally, the price of the Bermudan option Vj is
equal to

Vo = Vo + G (S0)

In Table[5] we display the prices obtain using product hybrid recursive quantization of Bermudan
Call/Put with n equally spaced exercise dates, strike K = 100 and maturity 7' = 0.25. The prices
of the European Call and Put are 3.6729 and 2.6779 respectively. QCall and QPut are the prices
given by quantization without control variate and QPutCV are the prices obtained using the
control variate as detailed in Equation .

no | 20 | 40 | 60

Ni Ny | QCall QPut QPutCV | QCall QPut QPutCV | QCall QPut QPutCV

10 5 | 3.8048 29741  2.7335 | 3.6829 2.9529  2.7329 | 3.6750 3.0341  2.7266
20 10 | 3.7693 2.8613  2.7371 | 3.8152 2.9447  2.7383 | 3.7944 2.9649  2.7382
50 20 | 3.6997 2.7732  2.7377 | 3.7338 2.8156  2.7401 | 3.6811 2.8236  2.7402
100 20 | 3.6908 2.7635  2.7374 | 3.6447 2.7553  2.7384 | 3.6417 2.7767  2.7387
200 20 | 3.6782 2.7602  2.7375 | 3.6470 2.7488  2.7382 | 3.6484 2.7704  2.7384

Table 5: Pricing of Bermudan options with maturity T = 0.25 and strike K = 100 in the
Stationary Heston model with product hybrid recursive quantization.

As r > 0, the Bermudan Call price is equal to the European one, namely 3.6729. Hence,
we display the prices only for the sake of studying the convergence of the methodology. We
notice in Table [5] that QCall converges to the European price but, as prescribed by theoretical
error bounds, the more timesteps n we add in the quantization tree, the larger the grids need to
be. For the Put, the methodology without control variate converges as well but control variate
dramatically reduces the size of the grid needed in order to converge.

We are aware that the theoretical assumptions to obtain error bounds for quantization based
space discretization schemes of the Milstein scheme (see [PS20]) are not satisfied by the volatility
process due to the presence of a square root. However, considering larger grids allow overcome
this problem in practice. Indeed we provide error bound for our model in a supplementary
material available in arXiv which guided our choice for the ratio grid size of the volatility over
grid size of the asset for a given time discretion time step (see also [Mon20]).
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Heston vs Stationary Heston. In Figure |8, we compare the prices of Bermudan Call / Put
with maturity 7' = 0.25 in the Heston model and the Stationary Heston model where both prices
are given by product hybrid recursive quantization with Ny = 50, No = 20 and n = 40. Our
aim is just to highlight the prices both models differ significantly, especially for short maturities.
In order to compare the prices, we compute the relative difference between the 2 prices, namely
(Psg — Prr)/Pr where Py is the price in the Heston model and Psyy is the price in the Stationary
Heston model. We used the same values given in Table [4] for the parameters in common and set
vp = 6 in the case of the Heston model. This means that we took as a starting value for the
volatility of the Heston its long-term mean. This confirms that, as expected, both models yield
different prices. To be more precise, prices in the Stationary Heston model are higher on the
tails and lower close to moneyness.

Call Put
1.75
0.10]
1.50]
1.25] 0.051
= 100 0.00]
5 07 0.05
z ~0.051
&1 0.501
0.25] —0.101
0.00]
~0.151
85 90 95 100 105 110 115 85 90 95 100 105 110 115
K K

Figure 8: Relative difference of Bermudan prices between the Heston model and the Stationary
Heston model.

Barrier options. Finally, we apply our recursive quantization algorithm for a path-dependent
European option pricing. The parameters of the Stationary Heston model are given in Table
and Sg = 100. The path-dependent option is an up-and-out Barrier option with strike K = 100,
maturity 7' = 0.5 (6 months), barrier L = 115 and N2 = 10. In Figure |§|, we display the prices
obtained for a fixed value No = 10 and differents values of N; and n. Again, we can notice the
impact of n on the approximated price.

Call (K=100)--L=115--N,=10

3.05 N1
—e— 50
3.00 100
—— 200
0 2.95
()
=)
& 2.90
2.85
2.80
30 60 90 180

Figure 9: Prices of a Barrier option in the Stationary Heston model given by product hybrid
recursive quantization with fized value Ny = 10.
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Appendices

A Discretization scheme of the volatility preserving the positivity

We recall the dynamics of the volatility
dvy = k(0 — vy)dt + {\/vjde[V/t

with kK > 0, § > 0and £ > 0. In this section, we discuss the choice of the discretization scheme under the
Feller condition, which ensures the positivity of the process.

Euler-Maruyama scheme. Let (Z;)r>1 an ii.d. sequence of standard normal distribution. Dis-
cretizing the volatility using an Euler-Maruyama scheme

5tk-,+1 = gtk + "{(9 - gtk)h + f \V/ 5tx‘-,\/EZk+1

with ¢t = kh, h = T'/n, may look natural. However, such a scheme clearly does not preserve positivity of
the process even if the Feller condition is fulfilled since

vo — k(0 — vo)h
6\/%\/5 ) > 0.

This suggests to introduce the Milstein scheme which is quite tractable in one dimension in absence of
Lévy areas.

]P(ﬂtl<0)—]P<Zl<_

Milstein scheme and boosted Milstein scheme. The Milstein scheme of the stochastic volatil-
ity is given by
Vi = Moo (ti, Dty rs Zis1)

where (see (3.4))

Moo(t.,2) = 2 o) h(b(t,x) 3 (aaé)(@) N (aa;)(x)h( 1 (x))2

z+

207 (x) 2 \/Eg;
with b(z) = k(0 — ), o(z) = &/ and ol (z) = % Consequently, under the Feller condition, the
positivity of M, (¢, x, 2) is ensured if

/
T = o(z) =0, b(t,x)ZMZO.
20! (x)
In our case, if the first condition holds as an equally since 2;(:?9)5) = ;*@ = x the second one fails. But
x DN

2 2 4

(0o (@) _ Vo €

can be bigger than b(¢,z). To solve this problem, we consider the following x-boosted volatility process
Y, =e"v, tel0,T], (A.1)
which satisfies the stochastic differnetial equation

dY, = e kfdt + £ e \/Y,dW,.
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Remark A.1. Note that the the process (Y;)seqo,71 will have a higher variance but, having in mind a
quantized scheme, this has no real impact (by contrast with a Monte Carlo simulation).

Now, if we look at the Milstein discretization scheme of Y;
ﬁ;wrl = ME’;, (tk:a Ek 5 Zk+1)
using the notation defined in (3.4)) where drift and volatility term are now time-dependents and given by

é-em‘,/Q

b(t, z) = e K0, 5(t,x) = Eyze?  and  F.(tx) = NG

Under the Feller condition, the positivity of the above scheme is ensured, since

Bta) _ g @E)(t) e

ALY < b(t,z) = e k6.
2" (t, ) 2 4 (t,2) = e

The last inequality is satisfied thanks to the condition % < 1 ensuring the positivity of the scheme.

B Quadratic Optimal Quantization: Generic Approach

Let X be a R~valued random variable with distribution P, defined on a probability space (€2, .4, P) such
that X € L (Q, A, P).

Let Ty = {z¥V,...,2¥} = R be a subset of size N indexed in an increasing order, called an N-
quantizer. Any such N-quantizer is in a bijective correspondence with the N-tuple z = (z, ... ,x%)lying
in the simplex of RY . This leads us to sometimes replace T'y by z.

The Voronoi partition (C;(I'n))i=1,...~ induced by 'y in such a one-dimensional setting is defined
by
Ci(FN) = (sz—l/2>x£\4f—1/2]7 iE{l,...,N—l}, CN(FN) = (m%_1/2,$%+1/2) (Bl)

N N
where Vi € {2,.. "N}’xi]\ilﬂ _ fﬁ,-712+9”i and :cfk = —o0 and x%_ﬂﬂ = +00. Elements of the cell are

closer to x; than to any other z; (up the endpoints).

The Voronoi quantization of X induced by I'y, denoted XTI~ or XV when ambiguity, is defined as
the nearest neighbour projection of X onto I'y based onto above Voronoi cells, namely

N
XN =Projp (X) = > 2N Lxec,(ry) - (B.2)
i=1

The probability distribution of XN (also know as weights) are given by

A~

P (XY =al) =P, (Ci(Tw)) =P (X € (a2 .01 0]).

To measure the adequacy of a grid to the distribution of X, one introduces the quadratic distortion
function at level N given by

1 ~
Qon:a = (21, 7y) — L [ min | X — va|2] — LR [dist(X,Ty)?] = =X — XV|2.
’ ie{1,...,N} 2 2
Of course, the above result can be extended to the LP case. We briefly recall some classical theoretical
results, see [GLO0, [Pagl8] for further details. The first one treats of existence of optimal quantizers.

Theorem B.1. (Ezistence of optimal N-quantizers) Let X € L (P) and N € IN*.
(a) The quadratic distortion function Qa N at level N attains a minimum at a N-tuple z* = (2, ... z¥)
and I'y = {va, ie{l,... ,N}} is a quadratic optimal quantizer at level N.
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(b) If the support of the distribution P, of X has at least N elements, then z* = (2, ... z%) has
pairwise distinct components, P, (Cl(l“jv)) > 0,i€{l,...,N}. Furthermore, the sequence N
inf eryny Q2N () converges to 0 and is decreasing as long as it is positive.

Uniqueness of an optimal N-quantizer (defined as an N-tuple with increasing components), is due
to Truskin [Tru82] was shown in dimension one under log-concavity assumptions on the density of the
distribution P, of X.

In what follows, we will drop the * subscript when speaking of optimal quantizers, * and I' will be
replaced by x and I'y.

The next result elucidates the asymptotic behavior of the distortion. We saw in Theorem [B:1] that
the infimum of the quadratic distortion converges to 0 as N goes to infinity. The next theorem, known
as Zador’s Theorem, establishes the sharp rate of convergence of the quantization error (stated here in
the quadratic case).

Theorem B.2. (Zador’s Theorem) (a) SHARP RATE [ZADSZ) [GLO0|. Let X € LB (P) for some § > 0.
Let P, (d€) = p(§) - MdE) + v(dE), where v is singular with respect to the Lebesque measure A on R.

3
~ 1 1 4
lim N i X XN, = — sdA| . B.3
pim N min = m“ﬁ ] B3

(b) NON ASYMPTOTIC UPPER-BOUND [GLO0O, [PAGIS|. Let § > 0. There exists a real constant Ci , €
(0, 4+00) such that, for every R-valued random variable X,

W1 i X-XV|,<cC X)N! B.4
’ FNCIgl‘IFHleN H ”2 1,p0'2+5( ) ( )

where, for r € (0,+m),0,(X) = minger [ X —al| < +0 is the L"-pseudo-standard deviation.
To compute optimal quantizers, we first differentiate Qg n, whose gradient is given by
V Q) = (E|E) - x)1 | : B.5
o) = (B[ =01 0 o (B.5)

Then any critical point of Qs , in particular its minima, satisfies

E [X 1 ]
Xe (Eﬁl/z’xﬁl/Z]

VOn() =0 < z= e ., i=1,...,N
P (X € (37#1/2’9””1/2]) (B.6)

s N _ Ky (xz{\jrl/Q) - Ky (3Cz‘l\i1/2)7 i

' Fy (xz]‘\-]rl/z) - Fy (xi]\il/Q)

where K () and F (-) are the first partial moment and the cumulative distribution respectively, function
of X, i.e.

N

geeey

K, (z)=E[X1x<] and F

X

(z) =P (X <=z). (B.7)
Note equation can be rewritten as the following so-called stationarity equation
E[XY | x]=X". (B.8)

This equality in is the starting point to the development of the first method devoted to the
numerical computation of optimal quantizers: the Lloyd’s method I. This fixed point method was first
devised in 1957 by S.P. Lloyd and published later [LIo82]. Starting from a sorted N-tuple z[° and with
the knowledge of the first partial moment K, and the cumulative distribution function F, of X, the
algorithm, which is essentially a deterministic fixed point method, is defined as follows

Ky (200) = K, (2V000)

N,[n+1] i+1/2 i—1/2 .
]]i = N,['n,] N,[n] 5 1 = 17...,N. (B~9)
Fy ($i+1/2) - Fy (xi71/2)
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In [Kie82], it has been shown that (:c[”])n>1 converges exponentially fast toward z, the optimal quantizer,
when the density ¢ of X is log-concave and not log-piecewise affine.

The convergence rate of this fixed point method can be improved e.g. by using Anderson acceleration
(see [And65| for the original paper and [WN11] for details on the procedure).

Other algorithms exist, such as, stabbed gradient descent, the Newton-Raphson zero search procedure
or its Levenberg-Marquardt variant which are deterministic procedures provided the density, the first
partial moment and the cumulative distribution function of X are known. Additionally, we can cite
stochastic procedures such as the CLVQ procedure (for Competitive Learning Vector Quantization) which
is a zero search stochastic gradient and the randomized version of the Lloyd’s method I. For more details,
the reader can refer to [Pagl8, [PY16].

Once the algorithm has been converging, we have at hand the quadratic optimal quantizer XN
of X and its associated probabilities given by

I
—

IP()?N=$?)=Fx($ﬁl/2)_FX(x£V*1/2)’ i=1,...,n. (B.10)
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