Stationary Heston model: Calibration and Pricing of exotics using Optimal Quantization

Thibaut Montes Joint work with Vincent Lemaire and Gilles Pagès Séminaire probabilités et statistiques, Le Mans

Tuesday 11th February, 2020

Table of Contents

1 Stationary Heston model

- 2 Pricing of European Options and Calibration
 - Pricing
 - Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

Table of Contents

1 Stationary Heston model

- 2 Pricing of European Options and Calibration
 - Pricing
 - Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

Stationary Heston model

The model

Dynamic of the asset price process $(S_t^{(\nu)})_{t \ge 0}$ and its volatility $(v_t^{\nu})_{t \ge 0}$ is given by

$$\begin{cases} \frac{dS_t^{(\nu)}}{S_t^{(\nu)}} = (r-q)dt + \sqrt{v_t^{\nu}} \left(\rho d\widetilde{W}_t + \sqrt{1-\rho^2} dW_t\right) \\ dv_t^{\nu} = \kappa(\theta - v_t^{\nu})dt + \xi \sqrt{v_t^{\nu}} d\widetilde{W}_t \end{cases}$$

- $S_0^{(\nu)} = s_0$ is the initial value of the process, r the spot rate, q the dividend rate,
- κ the mean reverting term,
- θ the long run average price variance,
- ξ is the volatility of the volatility,
- (W,\widetilde{W}) is a standard correlated 2d Brownian motion with correlation ρ ,

Stationary Heston model

The model

Dynamic of the asset price process $(S_t^{(\nu)})_{t \ge 0}$ and its volatility $(v_t^{\nu})_{t \ge 0}$ is given by

$$\begin{cases} \frac{dS_t^{(\nu)}}{S_t^{(\nu)}} = (r-q)dt + \sqrt{v_t^{\nu}} \left(\rho d\widetilde{W}_t + \sqrt{1-\rho^2} dW_t\right) \\ dv_t^{\nu} = \kappa (\theta - v_t^{\nu})dt + \xi \sqrt{v_t^{\nu}} d\widetilde{W}_t \end{cases}$$

- $S_0^{(\nu)} = s_0$ is the initial value of the process, r the spot rate, q the dividend rate,
- κ the mean reverting term,
- θ the long run average price variance,
- ξ is the volatility of the volatility,
- (W, \widetilde{W}) is a standard correlated 2d Brownian motion with correlation ρ ,
- $v_0^{\nu} \sim \mathcal{L}(\nu) \sim \Gamma(\alpha, \beta)$ with $\beta = (2\kappa)/\xi^2$ and $\alpha = \theta\beta$.

Remark: 4 parameters \implies 1 less than the Standard Heston Model.

Historv

T. Montes

Table of Contents

1 Stationary Heston mode

Pricing of European Options and Calibration Pricing

Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

Generic expression

The price of the European option on the asset $S_T^{(\nu)}$ is given by

$$I_0 = \mathbb{E}\left[e^{-rT}\varphi(S_T^{(\nu)})\right].$$

After preconditioning by v_0^{ν} , we have

$$I_0 = \mathbb{E}\left[\mathbb{E}\left[\mathbb{e}^{-rT}\varphi(S_T^{(\nu)}) \mid \sigma(v_0^{\nu})\right]\right] = \mathbb{E}\left[f(v_0^{\nu})\right]$$

where f(v) is the price of the European option in the Standard Heston model with deterministic initial conditions for the set of parameters $\lambda(v) = (s_0, r, q, \theta, \kappa, \xi, \rho, v).$

Example - Call option

If φ is the payoff of a Call option then f is simply the price given by Fourier transform in the standard Heston model of the European Call Option. Then

$$I_0 = \mathbb{E}\left[e^{-rT}(S_T^{(\nu)} - K)_+\right] = \mathbb{E}\left[C\left(\lambda(v_0^{\nu}), K, T\right)\right]$$

with

$$C(\lambda(\mathbf{v}), \mathbf{K}, \mathbf{T}) = S_0^{(\mathbf{v})} e^{-q\mathbf{T}} P_1(\lambda(\mathbf{v}), \mathbf{K}, \mathbf{T}) - \mathbf{K} e^{-r\mathbf{T}} P_2(\lambda(\mathbf{v}), \mathbf{K}, \mathbf{T})$$

and

$$P_1(\lambda(v), K, T) = \frac{1}{2} + \frac{1}{\pi} \int_0^{+\infty} \operatorname{Re}\left(\frac{e^{-iu\log(K)}}{iu} \frac{\psi(\lambda(v), u - \mathbf{i}, T)}{s_0 e^{(r-q)T}}\right) du$$
$$P_2(\lambda(v), K, T) = \frac{1}{2} + \frac{1}{\pi} \int_0^{+\infty} \operatorname{Re}\left(\frac{e^{-iu\log(K)}}{iu} \psi(\lambda(v), u, T)\right) du$$

where $\lambda(\mathbf{v}) = (\mathbf{s}_0, \mathbf{r}, \mathbf{q}, \theta, \kappa, \xi, \rho, \mathbf{v}).$

Practical aspects

Fixed-point quadratures

• I_0 can be written as an integral against the Laguerre weighting function

$$I_{0} = \int_{0}^{+\infty} f(v) \frac{\beta^{\alpha}}{\Gamma(\alpha)} v^{\alpha-1} e^{-\beta v} dv = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{+\infty} f(v) \omega(v) dv$$

where $\omega(\mathbf{v}) = \mathbf{v}^{\alpha-1} e^{-\beta \mathbf{v}}$ is the Laguerre weighting function.

 Then, for a fixed n > 0 with ω_i's and ν_i's the associated Laguerre weights and nodes, I₀ would be approximated by

$$\widetilde{I}_0^n = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \sum_{i=1}^n \omega_i f(v_i).$$

Quantization-based cubature method

Approximate I_0 using the following quantization-based cubature formula

$$\hat{I}_{0}^{N} = \mathbb{E}\left[f(\hat{v}_{0}^{N})\right] = \sum_{i=1}^{N} f(v_{0,i}^{N}) \mathbb{P}(\hat{v}_{0}^{N} = v_{0,i}^{N}).$$

T. Montes

8 / 49

Table of Contents

Stationary Heston model

2 Pricing of European Options and Calibration

- Pricing
- Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

The implied volatility surface from the market

Euro Stoxx 50 - 26th September 2019: $S_0 = 3541$, r = -0.32%, q = 0.225%

Let

$$\mathcal{P}_{\rm SH} = \left\{ (\theta, \kappa, \xi, \rho) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+ \times [-1, 1] \right\}$$

the calibrable Stationary Heston parameters and

$$\mathcal{P}_{\scriptscriptstyle H} = \left\{ (x, \theta, \kappa, \xi, \rho) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R}_+ \times [-1, 1] \right\}$$

the calibrable Standard Heston parameters.

The problem (without penalization)

Find ϕ^{\star} that minimizes

$$\min_{\phi \in \mathcal{P}} \sum_{K} \left(\frac{\sigma_{\mathsf{iv}}^{\textit{Market}}(K, T) - \sigma_{\mathsf{iv}}^{\textit{Model}}(\phi, K, T)}{\sigma_{\mathsf{iv}}^{\textit{Market}}(K, T)} \right)^2$$

where

- $\sigma_{\rm iv}^{\it Market}(K,T)$ is the implied volatility deduced from the market,
- σ^{Model}_{iv}(φ, K, T) is the implied volatility of the EU Call/Put price computed with a chosen model (Stationary Heston or Standard Heston).

Calibration to expiry 50 days (T = 50/365). Relative calibration errors: < 3% for each implied volatility.

The standard Heston model fails to produce the desired smile for very small maturities while the Stationary model has no problem to generate it with 1 parameter less.

T. Montes	Stationary Heston model	12 / 49	
-----------	-------------------------	---------	--

Term-structure comparison

Figure: Term-structure of the volatility in function of T and K of both models (left: Standard Heston and right: Stationary Heston) after calibration at 50 days.

Relative Errors comparison

The obtained parameters

ϕ^{\star}		ho	v ₀	θ	κ	ξ
Standard Heston	.	-0.74	0.152584	0.01487	80.05	5.22
Stationary Hestor	ı∥.	-0.75		0.02744	593.46	36.80

Figure: Parameters obtained for both models after calibration without penalization for options with maturity 50 days.

The obtained parameters

ϕ^{\star}		ho	v ₀	θ	κ	ξ
Standard Heston	.	-0.74	0.152584	0.01487	80.05	5.22
Stationary Hestor	ı∥.	-0.75		0.02744	593.46	36.80

Figure: Parameters obtained for both models after calibration without penalization for options with maturity 50 days.

• They do not fulfil the Feller condition

 $\xi^2 \leqslant 2\kappa\theta.$

Hence, we cannot simulate the model without reaching 0.

New calibration problem (with penalization)

Find ϕ^{\star} that minimizes

$$\min_{\phi \in \mathcal{P}} \sum_{K} \left(\frac{\sigma_{iv}^{Market}(K,T) - \sigma_{iv}^{Model}(\phi,K,T)}{\sigma_{iv}^{Market}(K,T)} \right)^{2} + \lambda \max(\xi^{2} - 2\kappa\theta, 0)$$

New calibration problem (with penalization)

Find ϕ^{\star} that minimizes

$$\min_{\phi \in \mathcal{P}} \sum_{K} \left(\frac{\sigma_{iv}^{Market}(K,T) - \sigma_{iv}^{Model}(\phi,K,T)}{\sigma_{iv}^{Market}(K,T)} \right)^{2} + \lambda \max(\xi^{2} - 2\kappa\theta, 0)$$

• Obtained parameters:

ϕ^{\star}		ρ	v ₀	θ	κ	ξ
Standard Heston		-0.83	0.0045	0.17023	2.19	1.04
Stationary Hestor	ı ∥	-0.99		0.02691	19.28	1.15

Figure: Parameters obtained for both models after calibration with penalization ($\lambda = 0.01$) for options with maturity 50 days.

T = 7D T = 14D 0.40 0.35 Т Heston - Heston - Stationary Heston Stationary Heston 0.35 0.30 0.30 ≥ 0.25 0.25 0.20 -Dilled . 0.15 0.15 0.10 -0.10 0.05 0.05 90 97.5 102.5 110 90 97.5 102.5 110 80 80 120 к T = 22D T = 50D 0.35 0.300 Market Market Heston 0.275 - Heston 0.30 Stationary Heston Stationary Heston 0.250

17 / 49

Term-structure comparison

Figure: Term-structure of the volatility in function of T and K of both models (left: Standard Heston and right: Stationary Heston) after calibration at 50 days.

Relative Errors comparison

Table of Contents

Stationary Heston model

- 2 Pricing of European Options and Calibration
 - Pricing
 - Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

Definitions

Let $\Gamma_N = \{x_1^N, \dots, x_N^N\} \subset \mathbb{R}$, a subset of size N, called N-quantizer, we define

• The Voronoï partition of ${\mathbb R}$ induced by the N-quantizer

$$C_i(\Gamma_N) = \left(x_{i-1/2}^N, x_{i+1/2}^N\right], \quad i \in [[1, N-1]], \quad C_N(\Gamma_N) = \left(x_{N-1/2}^N, x_{N+1/2}^N\right).$$

Easily defined in dimension one.

• The Voronoï Quantization of the random variable X

$$\widehat{X}^{\Gamma_N} = \operatorname{Proj}_{\Gamma_N}(X) = \sum_{i=1}^N x_i^N \, \mathbbm{1}_{X \in C_i(\Gamma_N)}$$

Definitions

Let $\Gamma_N = \{x_1^N, \dots, x_N^N\} \subset \mathbb{R}$, a subset of size N, called N-quantizer, we define

• The Voronoï partition of ${\mathbb R}$ induced by the N-quantizer

$$C_i(\Gamma_N) = (x_{i-1/2}^N, x_{i+1/2}^N], \quad i \in [[1, N-1]], \quad C_N(\Gamma_N) = (x_{N-1/2}^N, x_{N+1/2}^N).$$

Easily defined in dimension one.

• The Voronoï Quantization of the random variable X

$$\widehat{X}^{\Gamma_N} = \operatorname{Proj}_{\Gamma_N}(X) = \sum_{i=1}^N x_i^N \mathbbm{1}_{X \in C_i(\Gamma_N)}$$

• It is convenient to define the quadratic distortion function at level N

$$\mathcal{Q}_{2,\mathsf{N}}: x = (x_1^{\mathsf{N}}, \dots, x_{\mathsf{N}}^{\mathsf{N}}) \longmapsto \mathbb{E}\left[\min_{i \in [\![1,\mathsf{N}]\!]} |X - x_i^{\mathsf{N}}|^2\right] = \|X - \hat{X}^{\mathsf{N}}\|_2^2.$$

Figure: Gaussian Optimal Quantization

How to build an Optimal Quantizer?

1. Differentiate the $\mathcal{Q}_{2,N}$

The gradient is given by

$$\nabla \mathcal{Q}_{2,\mathsf{N}}(x_{\mathbf{i}:\mathsf{N}}) = \left(\mathbb{E}\left[(x_i^{\mathsf{N}} - X) \mathbb{1}_{X \in \left(x_{i-1/2}^{\mathsf{N}}, x_{i+1/2}^{\mathsf{N}} \right]} \right] \right)_{i=1,\ldots,\mathsf{N}}$$

2. Solve the fixed point problem

Find $x_{1:N}$ that cancel the gradient

$$\nabla \mathcal{Q}_{2,\mathsf{N}}\left(x_{\mathbf{i}:\mathsf{N}}\right) = 0 \quad \iff \quad x_i^{\mathsf{N}} = \frac{\mathbb{E}\left[X \,\mathbbm{1}_{X \in \left(x_{i-1/2}^{\mathsf{N}}, x_{i+1/2}^{\mathsf{N}}\right]}\right]}{\mathbb{P}\left(X \in \left(x_{i-1/2}^{\mathsf{N}}, x_{i+1/2}^{\mathsf{N}}\right]\right)}, \qquad i = 1, \dots, \mathsf{N}$$
$$\iff \quad x_i^{\mathsf{N}} = \frac{K_x\left(x_{i+1/2}^{\mathsf{N}}\right) - K_x\left(x_{i-1/2}^{\mathsf{N}}\right)}{F_x\left(x_{i+1/2}^{\mathsf{N}}\right) - F_x\left(x_{i-1/2}^{\mathsf{N}}\right)}, \qquad i = 1, \dots, \mathsf{N}.$$

Table of Contents

Stationary Heston model

- 2 Pricing of European Options and Calibration
 - Pricing
 - Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

Litterature

Recursive Quantization

- *Recursive marginal quantization of the Euler scheme of a diffusion process* by G. Pagès and A. Sagna. (2015)
- Recursive Marginal Quantization of Higher-Order Schemes by J. Kienitz, T. A. McWalter, E. Platen and R. Rudd. (2017)
- Product Markovian quantization of an R^d-valued Euler scheme of a diffusion process with applications to finance by L. Fiorin, G. Pagès and A. Sagna. (2018)

Previous work on Heston model using Quantization

- Pricing via Quantization in Stochastic Volatility Models by G. Callegaro, L. Fiorin and M. Grasselli. (2016)
- Fast Quantization of Stochastic Volatility Models by J. Kienitz, T. A. McWalter, E. Platen and R. Rudd. (2017)
- American quantized calibration in stochastic volatility by G. Callegaro, L. Fiorin and M. Grasselli. (2018)
- And more...

Recursive Quantization: the idea (1/3)

Figure: Start from a grid at time t_0 .

Recursive Quantization: the idea (2/3)

Figure: Simulation from t_0 to t_1 with a given discretization scheme F_0 .

Recursive Quantization: the idea (3/3)

Figure: Build the quantizer at time t_1 .

Table of Contents

Stationary Heston model

- 2 Pricing of European Options and Calibration
 - Pricing
 - Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

Model transformation

$$\begin{cases} \frac{dS_t^{(\nu)}}{S_t^{(\nu)}} = (r-q)dt + \sqrt{v_t^{\nu}} \left(\rho d\widetilde{W}_t + \sqrt{1-\rho^2} dW_t\right) \\ dv_t^{\nu} = \kappa (\theta - v_t^{\nu})dt + \xi \sqrt{v_t^{\nu}} d\widetilde{W}_t \end{cases}$$

Model transformation

$$\begin{cases} \frac{dS_t^{(\nu)}}{S_t^{(\nu)}} = (r-q)dt + \sqrt{v_t^{\nu}} \left(\rho d\widetilde{W}_t + \sqrt{1-\rho^2} dW_t\right) \\ dv_t^{\nu} = \kappa (\theta - v_t^{\nu})dt + \xi \sqrt{v_t^{\nu}} d\widetilde{W}_t \end{cases}$$

We will be working with (X_t, Y_t) defined by

• For the volatility $\longrightarrow Y_t = e^{\kappa t} v_t^{\nu}$.

• For the asset
$$\longrightarrow X_t = \log(S_t^{(\nu)})$$
.

First, the volatility

Milstein Scheme (preserving the positivity)

We consider the following *boosted* volatility process: let $Y_t = e^{\kappa t} v_t^{\nu}, t \in [0, T]$.

$$dY_t = \mathrm{e}^{\kappa t} \, \kappa \theta \, dt + \xi \, \mathrm{e}^{\frac{\kappa t}{2}} \, \sqrt{Y_t} d \, \widetilde{W}_t.$$

Now, if we look at the Milstein discretization scheme of Y_t

$$ar{Y}_{t_{k+1}} = \mathcal{M}_{\widetilde{b},\widetilde{\sigma}}ig(t_k,ar{Y}_{t_k},ar{Z}_{k+1}ig)$$

where $\widetilde{Z}_{k+1} \sim \mathcal{N}(0,1)$ and

$$\mathcal{M}_{\tilde{b},\tilde{\sigma}}(t,x,z) = x - \frac{\tilde{\sigma}(t,x)}{2\tilde{\sigma}'_{x}(t,x)} + h\left(\tilde{b}(t,x) - \frac{\tilde{\sigma}\tilde{\sigma}'_{x}(t,x)}{2}\right) + \frac{\tilde{\sigma}\tilde{\sigma}'_{x}(t,x)h}{2}\left(z + \frac{1}{\sqrt{h}\tilde{\sigma}'_{x}(t,x)}\right)^{2}$$

with h = T/n, *n* the number of time-steps and

$$\widetilde{b}(t,x) = e^{\kappa t} \kappa \theta, \qquad \widetilde{\sigma}(t,x) = \xi \sqrt{x} e^{\frac{\kappa t}{2}} \quad \text{and} \quad \widetilde{\sigma}'_x(t,x) = \frac{\xi e^{\frac{\kappa t}{2}}}{2\sqrt{x}}.$$

31 / 49

Then, the log-asset

Euler-Maruyama scheme

We consider the logarithm of the asset $X_t = \log(S_t^{(\nu)})$, yielding

$$dX_t = \left(r - \frac{v_t}{2}\right)dt + \sqrt{v_t}dW_t.$$

Now, using an Euler-Maruyama scheme for the discretization of X_t , we have

$$\begin{cases} \bar{X}_{t_{k+1}} = \mathcal{E}_{b,\sigma} \left(t_k, \bar{X}_{t_k}, \bar{Y}_{t_k}, Z_{k+1} \right) \\ \bar{Y}_{t_{k+1}} = \mathcal{M}_{\tilde{b},\tilde{\sigma}} \left(t_k, \bar{Y}_{t_k}, \tilde{Z}_{k+1} \right) \end{cases}$$

where $Z_{k+1} \sim \mathcal{N}(0,1)$ and $\mathbb{C}\operatorname{orr}(Z_{k+1}, \widetilde{Z}_{k+1}) = \rho$ and

×

$$\mathcal{E}_{b,\sigma}(t,x,y,z) = x + b(t,x,y)h + \sigma(t,x,y)\sqrt{hz}$$

with

$$b(t,x,y) = r - \frac{e^{-\kappa t} y}{2}$$
 and $\sigma(t,x,y) = \sqrt{e^{-\kappa t} y}.$

Table of Contents

Stationary Heston model

- 2 Pricing of European Options and Calibration
 - Pricing
 - Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

First, the volatility

We build recursively the Markovian quantization tree $(\hat{Y}_k)_{k \in [0,n]}$ where \hat{Y}_{k+1} is the Voronoï quantization of \tilde{Y}_{k+1} defined by

$$\widetilde{Y}_{k+1} = \mathcal{M}_{\widetilde{b},\widetilde{\sigma}}\big(t_k, \widehat{Y}_k, \widetilde{Z}_{k+1}\big), \qquad \widehat{Y}_{k+1} = \operatorname{Proj}_{\Gamma_{N_2}^{Y}}\big(\widetilde{Y}_{k+1}\big)$$

with $\Gamma_{N_2}^Y = \{y_1^{k+1}, \dots, y_{N_2}^{k+1}\}$ the optimal N_2 -quantizer of \widetilde{Y}_{k+1} and $\widetilde{Z}_{k+1} \sim \mathcal{N}(0, 1)$.

Figure: Rescaled Recursive quantization of the boosted-volatility process with its associated weights from t = 0 to t = 60 days with a time step of 5 days with grids of size N = 10.

Then, the log-asset

Now, using the fact that $(Y_t)_t$ has already been quantized and the Euler-Maruyama scheme of $(X_t)_t$, we define the Markov quantized scheme

$$\widetilde{X}_{k+1} = \mathcal{E}_{b,\sigma} \big(t_k, \widehat{X}_k, \widehat{Y}_k, Z_{k+1} \big), \qquad \widehat{X}_{k+1} = \operatorname{Proj}_{\Gamma_{N_1}^{X}} \big(\widetilde{X}_{k+1} \big)$$

with $\Gamma_{N_1}^X = \{x_1^k, \dots, x_{N_1}^k\}$ the optimal N_1 -quantizer of \widetilde{X}_{k+1} and $Z_{k+1} \sim \mathcal{N}(0, 1)$.

Notations

 $\hat{U}_k = (\hat{X}_k, \hat{Y}_k)$ is the product recursive quantization of $\bar{U}_k = (\bar{X}_k, \bar{Y}_k)$, the time-discretized processes defined by

$$\overline{U}_k = F_{k-1}(\overline{U}_{k-1}, Z_k), \quad \text{with} \quad F_k(u, Z) = \begin{pmatrix} \mathcal{E}_{b,\sigma}(t_k, x, y, Z_{k+1}^1) \\ \mathcal{M}_{\widetilde{b}, \widetilde{\sigma}}(t_k, y, Z_{k+1}^2) \end{pmatrix}.$$

where $Z_k = (Z_k^1, Z_k^2)$ is a standardized correlated Gaussian vector.

What about the error induced by the recursive quantization?

Notations

 $\hat{U}_k = (\hat{X}_k, \hat{Y}_k)$ is the product recursive quantization of $\bar{U}_k = (\bar{X}_k, \bar{Y}_k)$, the time-discretized processes defined by

$$\overline{U}_k = F_{k-1}(\overline{U}_{k-1}, Z_k), \quad \text{with} \quad F_k(u, Z) = \begin{pmatrix} \mathcal{E}_{b,\sigma}(t_k, x, y, Z_{k+1}^1) \\ \mathcal{M}_{\widetilde{b},\widetilde{\sigma}}(t_k, y, Z_{k+1}^2) \end{pmatrix}.$$

where $Z_k = (Z_k^1, Z_k^2)$ is a standardized correlated Gaussian vector.

What about the error induced by the recursive quantization?

Standard results of the type

$$\|\widehat{U}_{k} - \overline{U}_{k}\|_{2} \leq \sum_{j=1}^{k} C_{j} (N_{1,j} \times N_{2,j})^{-1/2}$$

when the schemes $F_k(u, z)$ are Lipschitz in u.

Notations

 $\hat{U}_k = (\hat{X}_k, \hat{Y}_k)$ is the product recursive quantization of $\bar{U}_k = (\bar{X}_k, \bar{Y}_k)$, the time-discretized processes defined by

$$\overline{U}_k = F_{k-1}(\overline{U}_{k-1}, Z_k), \quad \text{with} \quad F_k(u, Z) = \begin{pmatrix} \mathcal{E}_{b,\sigma}(t_k, x, y, Z_{k+1}^1) \\ \mathcal{M}_{\widetilde{b},\widetilde{\sigma}}(t_k, y, Z_{k+1}^2) \end{pmatrix}.$$

where $Z_k = (Z_k^1, Z_k^2)$ is a standardized correlated Gaussian vector.

What about the error induced by the recursive quantization?

Standard results of the type

$$\|\widehat{U}_k - \overline{U}_k\|_2 \leqslant \sum_{j=1}^k C_j \big(\mathsf{N}_{1,j} \times \mathsf{N}_{2,j}\big)^{-1/2}$$

when the schemes $F_k(u, z)$ are Lipschitz in u. But this is not our case... (CIR model)

Proposition

For every $k = 0, \ldots, n$

$$\|\widehat{U}_k - \overline{U}_k\|_2 \leq \sum_{j=0}^k \widetilde{A}_{j,k} (N_{1,j} \times N_{2,j})^{-1/2} + B_k \sqrt{h}$$

where

$$\widetilde{A}_{j,k} = 2^{\frac{p-2}{2p}} C_p^2 A_{j,k} \left(2^{(\frac{p}{2}-1)j} \beta_p^j \| \widehat{U}_0 \|_2^p + \alpha_p \frac{1 - 2^{(\frac{p}{2}-1)j} \beta_p^j}{1 - 2^{\frac{p}{2}-1} \beta_p} \right)^{1/p}$$

with

$$A_{j,k} = 2^{\frac{k-j}{2}} e^{\frac{\sqrt{h}}{2}(k-j)} \quad \text{and} \quad B_k = C_T(h) \sum_{j=0}^{k-1} 2^{\frac{k-1-j}{2}} e^{\frac{\sqrt{h}}{2}(k-1-j)}$$

where $\sum_{\emptyset} = 0$ by convention and $C_T(h) = O(1)$.

Proposition

For every $k = 0, \ldots, n$

$$\|\widehat{U}_k - \overline{U}_k\|_2 \leq \sum_{j=0}^k \widetilde{A}_{j,k} (N_{1,j} \times N_{2,j})^{-1/2} + \frac{B_k}{N_k} \sqrt{h}$$

where

$$\widetilde{A}_{j,k} = 2^{\frac{p-2}{2p}} C_p^2 A_{j,k} \left(2^{(\frac{p}{2}-1)j} \beta_p^j \| \widehat{U}_0 \|_2^p + \alpha_p \frac{1 - 2^{(\frac{p}{2}-1)j} \beta_p^j}{1 - 2^{\frac{p}{2}-1} \beta_p} \right)^{1/p}$$

with

$$A_{j,k} = 2^{\frac{k-j}{2}} e^{\frac{\sqrt{h}}{2}(k-j)} \quad \text{and} \quad B_k = C_T(h) \sum_{j=0}^{k-1} 2^{\frac{k-1-j}{2}} e^{\frac{\sqrt{h}}{2}(k-1-j)}$$

where $\sum_{\varnothing}=0$ by convention and $C_{T}(h)=\textit{O}(1).$

Table of Contents

Stationary Heston model

- 2 Pricing of European Options and Calibration
 - Pricing
 - Calibration

3 Quantization based Numerical Methodology

- Quick reminder on Optimal Quantization (for d = 1)
- For Bermudan and Barrier Options pricing
 - Discretization schemes
 - Product Recursive Quantization
 - Backward Steps

4 Conclusion

Bermudan Options

Its price, at time t_0 , is given by

$$V_0 = \sup_{\tau \in \{t_1, \cdots, t_n\}} \mathbb{E} \left[e^{-r\tau} \psi_{\tau}(X_{\tau}, Y_{\tau}) \mid \mathcal{F}_{t_0} \right].$$

Hence, we can define recursively the sequence of random variable L^p -integrable $(V_k)_{0\leqslant k\leqslant n}$

$$\begin{cases} V_n = e^{-rt_n} \psi_n(X_n, Y_n), \\ V_k = \max\left(e^{-rt_k} \psi_k(X_k, Y_k), \mathbb{E}[V_{k+1} \mid \mathcal{F}_k]\right), & 0 \le k \le n-1 \end{cases}$$

called Backward Dynamical Programming Principle.

Bermudan Options

Using the Product Recursive Quantizer

We approximate the Backward Dynamical Programming Principle by the following sequence involving the couple $(\hat{X}_k, \hat{Y}_k)_{0 \le k \le n}$

$$\begin{cases} \widehat{V}_n = e^{-rt_n} \psi_n(\widehat{X}_n, \widehat{Y}_n), \\ \widehat{V}_k = \max\left(e^{-rt_k} \psi_k(\widehat{X}_k, \widehat{Y}_k), \mathbb{E}\left[\widehat{V}_{k+1} \mid (\widehat{X}_k, \widehat{Y}_k)\right]\right), \qquad k = 1, \dots, n-1. \end{cases}$$

Bermudan Options

Using the Product Recursive Quantizer

The last equation can be rewritten

$$\begin{cases} \hat{v}_n(x_{i_1}^n, y_{i_2}^n) = e^{-rt_n} \psi_n(x_{i_1}^n, y_{i_2}^n), \\ \hat{v}_k(x_{i_1}^k, y_{i_2}^k) = \max\left(e^{-rt_k} \psi_k(x_{i_1}^k, y_{i_2}^k), \sum_{j_1=1}^{N_1} \sum_{j_2=1}^{N_2} \pi_{(j_1, j_2), (j_1, j_2)}^k \hat{v}_{k+1}(x_{j_1}^{k+1}, y_{j_2}^{k+1})\right), \end{cases}$$

with $\pi_{(i_1,i_2),(j_1,j_2)}^k = \mathbb{P}\left(\widehat{X}_{k+1} = x_{j_1}^{k+1}, \widehat{Y}_{k+1} = y_{j_2}^{k+1} \mid \widehat{X}_k = x_{i_1}^k, \widehat{Y}_k = y_{i_2}^k\right).$

Finally, the approximation of the price of the bermudan option is given by

$$\mathbb{E}\left[\hat{v}_k(x_0, \hat{Y}_0)\right] = \sum_{i=1}^{N_2} p_i \, \hat{v}_k(x_0, y_i^0)$$

with $p_i = \mathbb{P}(\hat{Y}_0 = y_i^0)$.

Bermudan Options - Numerical examples (T = 0.5 - Call/Put with K = 100)

Figure: Prices of Bermudan options in the stationary Heston model given by product hybrid recursive quantization with fixed value $N_2 = 10$.

Barrier Options

A Barrier option is a path-dependent financial product whose payoff at maturity date T depends on the value of the process X_T at date T and its maximum or minimum over the period [0, T].

More precisely, we are interested by options with the following types of payoff h

$$h = f(X_T) \mathbb{1}_{\{\sup_{t \in [\mathbf{0}, T]} X_t \in I\}} \quad \text{or} \quad h = f(X_T) \mathbb{1}_{\{\inf_{t \in [\mathbf{0}, T]} X_t \in I\}}$$

where *I* is an unbounded interval of \mathbb{R} , \mathcal{T} is the maturity date and *f* can be any vanilla payoff function (Call, Put, Spread, Butterfly, ...).

Barrier Options

Using a representation formula

Now, using the representation formula based on the **conditional law of the Brownian Bridge** for the price of up-and-out options \bar{P}_{UO} and down-and-out options \bar{P}_{DO}

$$\bar{P}_{UO} = e^{-rT} \mathbb{E}\left[f(\bar{X}_{T}) \mathbb{1}_{\sup_{t \in [0,T]} \bar{X}_{t} \leq L}\right] = e^{-rT} \mathbb{E}\left[f(\bar{X}_{T}) \prod_{k=0}^{n-1} G^{k}_{(\bar{X}_{k}, \overline{Y}_{k}), \bar{X}_{k+1}}(L)\right]$$

where L is the barrier and

$$G_{(x,y),z}^k(u) = \left(1-\mathrm{e}^{-2n\frac{(x-u)(z-u)}{T\sigma^2(t_k,x,y)}}\right) \mathbbm{1}_{\{u \geqslant \max(x,z)\}}\,.$$

Equivalent formulas for other standard Barrier options.

Barrier Options

Using the Product Recursive Quantizer

Finally, replacing (\bar{X}_k, \bar{Y}_k) by (\hat{X}_k, \hat{Y}_k) and using a recursive algorithm yield

$$\begin{cases} \widehat{V}_n = e^{-rT} f(\widehat{X}_n), \\ \widehat{V}_k = \mathbb{E}\left[g_k(\widehat{X}_k, \widehat{Y}_k, \widehat{X}_{k+1})\widehat{V}_{k+1} \mid (\widehat{X}_k, \widehat{Y}_k)\right], \quad 0 \le k \le n-1 \end{cases}$$

that can be rewritten

$$\begin{cases} \widehat{v}_{n}(x_{i_{1}}^{n}, y_{i_{2}}^{n}) = e^{-rT} f(x_{i_{1}}^{n}), \\ \widehat{v}_{k}(x_{i_{1}}^{k}, y_{i_{2}}^{n}) = \sum_{j_{1}=1}^{N_{1}} \sum_{j_{2}=1}^{N_{2}} \pi_{(i_{1}, i_{2}), (j_{1}, j_{2})}^{k} \widehat{v}_{k+1}(x_{j_{1}}^{k+1}, y_{j_{2}}^{k+1}) g_{k}(x_{i_{1}}^{k}, y_{i_{2}}^{k}, x_{j_{1}}^{k+1}), \end{cases}$$

with $\pi_{(i_1,i_2),(j_1,j_2)}^k = \mathbb{P}\left(\hat{X}_{k+1} = x_{j_1}^{k+1}, \hat{Y}_{k+1} = y_{j_2}^{k+1} \mid \hat{X}_k = x_{i_1}^k, \hat{Y}_k = y_{i_2}^k\right)$ and $g_k(x,y,z) = G_{(x,y),z}^k(L)$.

Barrier Options - Numerical example (T = 0.5 - Call with K = 100 and L = 115)

Figure: Prices of Barrier options with strike K = 100 in the stationary Heston model given by product hybrid recursive quantization with fixed value $N_2 = 10$.

Conclusion

So far

- Introduced a model with steeper smile volatility surface for short maturities than Standard Heston model.
- Fast numerical solution for the pricing of European, Bermudan and Barrier options.
- Calibration.

And more ..

• Asian Options

T. Montes

Thank you for your attention!