Stationary Heston model: Calibration and

Pricing of exotics using Optimal Quantization

Thibaut Montes

Joint work with Vincent Lemaire and Gilles Pageés
Séminaire probabilités et statistiques, Le Mans

Tuesday 11tP February, 2020

T. Montes Stationary Heston model 1/49



Table of Contents

Stationary Heston model

Pricing of European Options and Calibration
m Pricing
m Calibration

Quantization based Numerical Methodology
m Quick reminder on Optimal Quantization (for d = 1)
m For Bermudan and Barrier Options pricing
= Discretization schemes
» Product Recursive Quantization
= Backward Steps

Conclusion

T. Montes Stationary Heston model 2 /49



Table of Contents

Stationary Heston model

T. Montes Stationary Heston model 3 /49



Stationary Heston model

Stationary Heston model

The model

Dynamic of the asset price process (St(”))tzo and its volatility (v{)¢=o is given by

) -
B _ (r —q)dt + /v (pd W, + /1 — p2dW,)

s
dv! = k(0 — v{)dt + &V d W

. Sé”) = 50 is the initial value of the process, r the spot rate, g the dividend rate,
e x the mean reverting term,
e 0 the long run average price variance,

e ¢ is the volatility of the volatility,

o (W, W) is a standard correlated 2d Brownian motion with correlation p,

T. Montes Stationary Heston model 4 /49



Stationary Heston model

The model

Dynamic of the asset price process (St(”))tzo and its volatility (v{)¢=o is given by
dst”)

) =(r—q)dt +/v/ (det +4/1— p2th)
t

dvi = k(0 — v{)dt + &/ dW,

. Sé”) = 50 is the initial value of the process, r the spot rate, g the dividend rate,

e x the mean reverting term,

0 the long run average price variance,

& is the volatility of the volatility,

o (W, W) is a standard correlated 2d Brownian motion with correlation p,

W~ L) ~T(a, B) with 8 = (2k)/¢? and o = 6.

Remark: 4 parameters = 1 less than the Standard Heston Model.

Historv
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Pricing of European Options and Calibration Pricing

Generic expression

The price of the European option on the asset S(TV) is given by
I =E[e o(S¥)].
After preconditioning by v§, we have
=B |E[e™T oY) | o(w)]| = E[f(%)]

where f(v) is the price of the European option in the Standard Heston model
with deterministic initial conditions for the set of parameters

)‘(V) = (50a r,q, 03 H,gapv V)-

T. Montes Stationary Heston model 6 /49



Pricing of European Options and Calibration Pricing

Example - Call option

If © is the payoff of a Call option then f is simply the price given by Fourier
transform in the standard Heston model of the European Call Option. Then

h=E[eT(SY - K),|=F [C(A(v{,’), K, T)]

with
COAv), K, T) = S e 9T PL(A(v), K, T) = Ke™" Po(A(v), K, T)
and
1 1 [t e—iulog(K) 1/J(>\(V), u— i’ T)
PL(Mv). K, T) = 2 ;fo Re( iu soelr—aT )du
1 1 [t e—iulog(K)
Po(AM(v), K, T) == ff Re(,w()\(v),u, T))du
2 ™ Jo [17)

where )\(V) = (507 r, q797’<’a§7p7 V)'
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Pricing of European Options and Calibration Pricing

Practical aspects

Fixed-point quadratures

e Iy can be written as an integral against the Laguerre weighting function
+00 ﬁa /Ba +00
I:J f(v vele P gy = J f(v)w(v)dv
=) M (@) Jo )

where w(v) = v@ e P

is the Laguerre weighting function.

e Then, for a fixed n > 0 with w;'s and v;'s the associated Laguerre weights and
nodes, o would be approximated by

Ba
MNa) :

Quantization-based cubature method

Approximate Iy using the following quantization-based cubature formula

B’ = w,-f(v,-).
=1

4

N
B =E[f@"] = f(v) P = vh)-

i=1
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Pricing of European Options and Calibration Calibration

The implied volatility surface from the market

Euro Stoxx 50 - 26th September 2019:
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Pricing of European Options and Calibration Calibration

Let
Po = {(0,5,6,0) € Ry x Ry x Ry x[-1,1]}

the calibrable Stationary Heston parameters and
P, ={(x,0,5,&p) e Ry x Ry x Ry x Ry x[—1,1]}

the calibrable Standard Heston parameters.

The problem (without penalization)

Find ¢* that minimizes

O._Market(K T) _ O._Model(¢ K T) 2
( O.il\v/larket(K7 T) >

where
o gMarket(K T) is the implied volatility deduced from the market,

o oModel(¢ K, T) is the implied volatility of the EU Call/Put price
computed with a chosen model (Stationary Heston or Standard Heston).

v
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g of European Options and Calibra Calibration

Calibration to expiry 50 days (T = 50/365). Relative calibration errors: < 3% for each implied volatility.
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The standard Heston model fails to produce the desired smile for very small maturities
while the Stationary model has no problem to generate it with 1 parameter less.
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Pricing of European Options and Calibration Calibration

Term-structure comparison

Heston

Stationary Heston

Implied Volatility

0 90 975 1025 110 120 90 975 1025 110 120
K K

Figure: Term-structure of the volatility in function of T and K of both models

(left: Standard Heston and right: Stationary Heston) after calibration at 50
days.
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Pricing of European Options and Ca

Relative Errors comparison

Heston

Stationary Heston
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Pricing of European Options and Calibration Calibration

The obtained parameters

¢ | » Vo 4 K £
Standard Heston || —0.74 0.152584 0.01487 80.05  5.22
Stationary Heston || —0.75 0.02744 593.46 36.80

Figure: Parameters obtained for both models after calibration without
penalization for options with maturity 50 days.
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Pricing of European Options and Calibration Calibration

The obtained parameters

¢ | » Vo 4 K £
Standard Heston || —0.74 0.152584 0.01487 80.05  5.22
Stationary Heston || —0.75 0.02744 593.46 36.80

Figure: Parameters obtained for both models after calibration without
penalization for options with maturity 50 days.

e They do not fulfil the Feller condition
£2 < 2k0.
Hence, we cannot simulate the model without reaching 0.
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Pricing of European Options and Calibration Calibration

New calibration problem (with penalization)

Find ¢* that minimizes

min

2
mi (¢, K, T)) + A max(f2 —2k80,0)

<O.il\\l/larket<K’ T) _ O'i,\\,/IOdel
Market
% oparket(K,T)
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Pricing of European Options and Calibration Calibration

New calibration problem (with penalization)

Find ¢* that minimizes

Market Model
<Uiv (K’ T) — Oy
K

KT
O._Market(K T)((b )) + A max({Q - 2/‘”9~ 0)

e Obtained parameters:

& I r w6 s ¢
Standard Heston || —0.83 0.0045 0.17023 2.19 1.04
Stationary Heston H —0.99 0.02691 19.28 1.15

Figure: Parameters obtained for both models after calibration with penalization
(A = 0.01) for options with maturity 50 days.
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Pricing of European Options and Calibration

Calibration

Calibration to expiry 50 days (T = 50/365). Relative calibration errors: < 3% for each implied volatility.
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Pricing of European Options and Calibration Calibration

Term-structure comparison

Stationary Heston

Heston

Implied Volatility
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Figure: Term-structure of the volatility in function of T and K of both models
(left: Standard Heston and right: Stationary Heston) after calibration at 50
days.
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Pricing of European Options and Calibration Calibration

Relative Errors comparison
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

Definitions

Let [y = {xlN, . ,x,'\‘/} c R, a subset of size N, called N-quantizer, we define

e The Voronoi partition of R induced by the N-quantizer

G(Tn) = (3 1o xta)s T€[LN=1], Cn(Tw) = (XN_1/2 XN s1/2)-
Easily defined in dimension one.

e The Voronoi Quantization of the random variable X

N
XM = Projr, (X) = > xM Ixec (ry)
i=1
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

Definitions

Let [y = {xlN, . 7x,'\‘/} c R, a subset of size N, called N-quantizer, we define

e The Voronoi partition of R induced by the N-quantizer

G(Tn) = (3 1o xta)s T€[LN=1], Cn(Tw) = (XN_1/2 XN s1/2)-
Easily defined in dimension one.

e The Voronoi Quantization of the random variable X

N
XM = Projr, (X) = > xM Ixec (ry)
i=1

e |t is convenient to define the quadratic distortion function at level N
Qo i x = (', xi) — B min (X — x| = X - X2,

ie[1,N]
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

PN =P(XeC@y)=P(X =xN)

? 1

%

N [N
X2 Jivin
T

AN

N

N
xi

Figure: Gaussian Optimal Quantization
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

How to build an Optimal Quantizer?

1. Differentiate the Q>

The gradient is given by

\% QZ,N(Xl;N) = (E [(XIN - X) ]IXe(xf’!l/z,XfAjrl/z] ]) i1 N

=1,...,

2. Solve the fixed point problem

Find x7.y that cancel the gradient

E [X ]lXE(X.N xN ] ]

VoOn(x,) =0 = x'= R i=1,...,N
P (X € (XY 12 IIYH/Z])

s KN _ Ky (X:IYH/ ) = Ko (Y 1/2) _q N,
’ Fy (X,,yrl o) = F (Y 1/2)
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Litterature

Recursive Quantization

e Recursive marginal quantization of the Euler scheme of a diffusion process by G.
Pagés and A. Sagna. (2015)

e Recursive Marginal Quantization of Higher-Order Schemes by J. Kienitz, T. A.
McWalter, E. Platen and R. Rudd. (2017)

o Product Markovian quantization of an RY-valued Euler scheme of a diffusion
process with applications to finance by L. Fiorin, G. Pagés and A. Sagna. (2018)

Previous work on Heston model using Quantization

e Pricing via Quantization in Stochastic Volatility Models by G. Callegaro, L.
Fiorin and M. Grasselli. (2016)

e Fast Quantization of Stochastic Volatility Models by J. Kienitz, T. A. McWalter,
E. Platen and R. Rudd. (2017)

e American quantized calibration in stochastic volatility by G. Callegaro, L. Fiorin
and M. Grasselli. (2018)

e And more... )
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Quantization based Numerical Methodology

Recursive Quantization: the idea (1/3)

For Bermudan and Barrier Options pricing
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Figure: Start from a grid at time ty.
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Recursive Quantization: the idea (2/3)

o

. pf =P =vf)
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Figure: Simulation from ty to t; with a given discretization scheme Fy.
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Quantization based Numerical Methodology For Bermudan and Barrier Op

Recursive Quantization: the idea (3/3)
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Figure: Build the quantizer at time t;.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Model transformation

ds®

A = (r—q)dt+ Vv}’(det + /1 - p2dW,)
t

dv! = k(0 — vV )dt + &/ d W,
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Quantization based Numerical Methodology For Bermudan and Barrier Options

Model transformation

ds®

A = (r—q)dt+ Vv}’(det + /1 - p2dW,)
t

dv! = k(0 — vV )dt + &/ d W,

We will be working with (X;, Y;) defined by

e For the volatility — Y; = e v/},

e For the asset — X; = |Og(5t(y))'

T. Montes Stationary Heston model

pricing
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

Milstein Scheme (preserving the positivity)

We consider the following boosted volatility process: let Y; = e"* v/ t € [0, T].
dY: = " kOdt + £ \/Yed W,
Now, if we look at the Milstein discretization scheme of Y;
Yoers = M 5 (th, Yoo, Ziy1)

where Zyi1 ~ N(0,1) and

2
e o(t, x) E(t x) — ool (t, x) ool (t,x)h . 1
(t,x,z) = 7) +h (b(t7 ) > + ( + )

257, (t, x 2 2 VhF(t, x)
with h = T/n, n the number of time-steps and

£
24/x°

T. Montes Stationary Heston model 31/ 49
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset

Euler-Maruyama scheme

We consider the logarithm of the asset X; = Iog(St(")), yielding
dX, = (r - g) dt + /VedW,.

Now, using an Euler-Maruyama scheme for the discretization of X;, we have

thﬂ = 5b,a(tk7)_<tk7 Vtky Zk+1)
?tk+1 = Mgﬁ(tka Vl’kv 21(-&-1)

where Z,1 ~ N(0,1) and Corr(Zy1, §k+1) = p and

Ebo(t,x,y,2) = x+ b(t,x,y)h+ o(t,x,y)Vhz

with

—Kt

b(t,x,y) = r—° 2 4 and o(t,x,y) = /e~rty.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

We build recursively the Markovian quantization tree (\A/k)ke[[oﬁ,,ﬂ where \A/k“ is
the Voronoi quantization of \N/k+1 defined by

Yie1 = Mgﬁ(tk, e, Zk+1)7 Vi1 = Pfojr,{2 (\N/kﬂ)

with Y, = {yk+t .. ,y,’\‘,:rl} the optimal N»-quantizer of Y. and
Zki1 ~N(0,1).
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For Bermudan and Barrier Options

Quantization based Numerical Methodology

Probability pk

Quantizer ¥,

Figure: Rescaled Recursive quantization of the boosted-volatility process with
its associated weights from t = 0 to t = 60 days with a time step of 5 days
with grids of size N = 10.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset
Now, using the fact that (Y;); has already been quantized and the
Euler-Maruyama scheme of (X;):, we define the Markov quantized scheme
Xis1 = 5b,a(tk,)A<k, Yi, Zii1), Xr1 = Projre ()?kJrl)

with Fﬁl = {xf,... ,x,’\‘,l} the optimal N;-quantizer of )N(k+1 and

{
Zk+1 ~ N(O’ 1)
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

[%-error

Uk = ()A(k, \7;() is the product recursive quantization of U, = (X, Yx), the
time-discretized processes defined by

U U S [l t, 7X7y7 Zl
Uc = Fi—1(Uk=1, Zk),  with  Fe(u,Z) = ( b ( k k+1)>

Mg,g(t’(v Y, ZE+1)

where Z = (Z}, Z?) is a standardized correlated Gaussian vector.

What about the error induced by the recursive quantization?
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

[%-error

Uk = ()A(k, \7;() is the product recursive quantization of U, = (X, Yx), the
time-discretized processes defined by

U U S [l t, 7X7y7 Zl
Uc = Fi—1(Uk=1, Zk),  with  Fe(u,Z) = ( b ( k k+1)>

Mg,g(t’(v Y, Zk2+l)

where Z = (Z}, Z?) is a standardized correlated Gaussian vector.

What about the error induced by the recursive quantization?

Standard results of the type
7y i . 1/2
10— Uil < 3 G (Naj x Noj) ™
j=1

when the schemes Fy(u, z) are Lipschitz in u.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

[%-error

Uk = ()A(k, \7;() is the product recursive quantization of U, = (X, Yx), the
time-discretized processes defined by

U U S [l t, 7X7y7 Zl
Uc = Fi—1(Uk=1, Zk),  with  Fe(u,Z) = ( b ( k k+1)>

Mg,g(t’(v Y, ZE+1)

where Z = (Z}, Z?) is a standardized correlated Gaussian vector.

What about the error induced by the recursive quantization?

Standard results of the type

k
10— Oxlla < 3 G(May x Noy) ™2
j=1

when the schemes Fy(u, z) are Lipschitz in u.
But this is not our case... (CIR model)
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

[%-error

For every k =0,...,n

k
AN ~ ~1/2
H Uy — UkHz < Z Aj’k(NlJ X Nz’j) / + Bk\/ﬁ
j=o
where
~ p—2 LA~ 1 _2(5 JBJ
Ajk =27 CIA; (2(5_1)JﬁéUof + app_lp>
1-—2z 5,,
with

. k—1
A =27 FE6D  and B, = Cr(h sz“e@klf)
Jj=0

where 3 = 0 by convention and Cr(h) = O(1).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

[%-error

For every k =0,...,n

K
~ - ~ ~1/2
[Uk = Uk, < Z Ajk(Nyj x Noj) 2L B
j=0
where
~ p—2 LA~ 1 _2(5 JBJ
Ajk =27 CIA; (2(5_1)JﬁéUof + app_lp>
1-2515,
with

) k—1
Ajk_2zjez(kj) and By = Cr(h sz“e?klf)
Jj=0

where 3 = 0 by convention and Cr(h) = O(1).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Its price, at time tg, is given by

W = sup E[eith/}T(X‘F?YTH]:tO]'

T€{ty, " ,tn}

Hence, we can define recursively the sequence of random variable LP-integrable
(Vk)Oékén

V, = e %(Xn, Yn)a
Vie = max (e "™ ¢ (Xie, Yi), B[ Vi1 | i) 0<k<n-1

called Backward Dynamical Programming Principle.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Using the Product Recursive Quantizer

We approximate the Backward Dynamical Programming Principle by the
following sequence involving the couple (Xk, Yk)o<k<n

‘7n =e wn()?nv ?n),
‘7k = max (eirtk Q/Jk()?k, \/}k),E [\7;(_,_1 | ()?k, ?k)]>, k = ]., e, n— 1.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Using the Product Recursive Quantizer

The last equation can be rewritten

/‘;n(xl!:7yi,21) = eirtn wn(xi:7yi,21)a

N1 Nz
~ ok ky _ —rty kK k k - k+1  k+1
Vk(X’i’yl'z) =max| e wk(xﬁ’yiz)’ Z Z 7‘_(/'1-,/'2)a(J'1-J'2)Vk""l(x_/l Vi ) ’
Ji=1j2=1
: k _ Y o Jk+tl O k+l v ok v ok
with T (i) Gada) = P (Xk+1 =X, Yir1 = Y | Xk = xi, Yk = y,-z).

Finally, the approximation of the price of the bermudan option is given by

N
E [Vi(x0, Yo)| = Z pi Vi(x0, ¥7)
izl

with p; = P(Yo = y?).
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Quantization based Numerical Methodology

For Bermudan and Barrier Options pricing

Bermudan Options - Numerical examples
(T =0.5 - Call/Put with K = 100)

Call (K=100) -- N, =10

Put (K=100) - N, =10

4.4 4.7
—— EU price —— EU price
4.3 4.6
4.2 s 4.5 .
4 ¥ ] s
Q41 0 44
£ [ & L
40 Ny 4.3 N,
e 50 42{, e 50
3.9{° 100 100
« 200 4.1 « 200
38 30 60 90 180 30 60 90 180

n

n

Figure: Prices of Bermudan options in the stationary Heston model given by

product hybrid recursive quantization with fixed value N = 10.

T. Montes

Stationary Heston model
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

A Barrier option is a path-dependent financial product whose payoff at maturity
date T depends on the value of the process X7 at date T and its maximum or
minimum over the period [0, T].

More precisely, we are interested by options with the following types of payoff h

h = f(XT) Lisup,cio.r) Xeel} or  h=f(XT) Linf,0. 1) Xecl}

where / is an unbounded interval of R, T is the maturity date and f can be any
vanilla payoff function (Call, Put, Spread, Butterfly, ...).
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Barrier Options

Using a representation formula

Now, using the representation formula based on the conditional law of the
Brownian Bridge for the price of up-and-out options Pyo and down-and-out
options Ppo

n—1
Puyo = e TE [f(XT) ‘ﬂsup,E[g,T] XrSL] =e T E |:f(X7-) H G&k’vk),)—(k+1(L)
k=0
where L is the barrier and

_2,,%
G(’;’y)’z(u) = <1 —e To2(ty,x,y) ) ]l{UZmax(x,z)} .

Equivalent formulas for other standard Barrier options.
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Barrier Options

Using the Product Recursive Quantizer

Finally, replacing (X, Yx) by ()A(k, \A/k) and using a recursive algorithm yield

Vo =e T F(X,),
\7;( E [gk()?ka ?k;)?k+1)\7k+1 ‘ ()?k, ?k)] s 0 < k <n-— 1

that can be rewritten

Va(Xi, yi) = e 7T f(x),

N1 Nao
= k ny __ k =~ k+1  k+1 k k _k+1
Vk(Xilayiz)* Z Zﬂ-(il‘jz)"(jl’jz)vk+l(le Y )gk(x,-l,y,-27><j )»
Ji=1j2=1

with Wé(il,iz).,(jl,jz) =P ()AQ(H = Xfi“, \A/Hl = yjl:rl | )AQ( = Xl-,;., \A/k = y,-i) and
g(x.y,2) = G ), (L).
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Barrier Options - Numerical example
(T =0.5 - Call with K =100 and L = 115)

Call (K=100) --L=115--N, =10

3.05 Ny
—e— 50
3.00 100
—— 200
0 2.95
[
=
T 2.90
2.85
2.80
30 60 90 180

n

Figure: Prices of Barrier options with strike K = 100 in the stationary Heston
model given by product hybrid recursive quantization with fixed value N, = 10.
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Conclusion

e Introduced a model with steeper smile volatility
surface for short maturities than Standard Heston
model.

e Fast numerical solution for the pricing of European,
Bermudan and Barrier options.

e Calibration.

And more..

e Asian Options
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Thank you for your
attention!
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