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Stationary Heston model

Stationary Heston model

The model

Dynamic of the asset price process pSpνqt qtě0 and its volatility pvνt qtě0 is given by
$

’

&

’

%

dSpνqt

Spνqt

“ pr ´ qqdt `
a

vνt
`

ρdĂWt `
a

1´ ρ2dWt

˘

dvνt “ κpθ ´ vνt qdt ` ξ
a

vνt dĂWt

‚ Spνq0 “ s0 is the initial value of the process, r the spot rate, q the dividend rate,

‚ κ the mean reverting term,

‚ θ the long run average price variance,

‚ ξ is the volatility of the volatility,

‚ pW , ĂW q is a standard correlated 2d Brownian motion with correlation ρ,

‚ vν0 „ Lpνq „ Γpα, βq with β “ p2κq{ξ2 and α “ θβ.
Remark: 4 parameters ùñ 1 less than the Standard Heston Model.

History
Introduced by Pagès et Panloup in 2009 then studied by Jacquier and Shi in 2017.
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Pricing of European Options and Calibration Pricing

Generic expression

The price of the European option on the asset SpνqT is given by

I0 “ E
“

e´rT ϕpS
pνq
T q

‰

.

After preconditioning by vν0 , we have

I0 “ E
”

E
“

e´rT ϕpS
pνq
T q | σpvν0 q

‰

ı

“ E
“

f pvν0 q
‰

where f pvq is the price of the European option in the Standard Heston model
with deterministic initial conditions for the set of parameters
λpvq “ ps0, r , q, θ, κ, ξ, ρ, vq.
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Pricing of European Options and Calibration Pricing

Example - Call option

If ϕ is the payoff of a Call option then f is simply the price given by Fourier
transform in the standard Heston model of the European Call Option. Then

I0 “ E
“

e´rT pS
pνq
T ´ K q`

‰

“ E
”

C
`

λpvν0 q,K ,T
˘

ı

with

C pλpvq,K ,T q “ S
pvq
0 e´qT P1

`

λpvq,K ,T
˘

´ K e´rT P2
`

λpvq,K ,T
˘

and

P1
`

λpvq,K ,T
˘

“
1
2
`

1
π

ż `8

0
Re

ˆ

e´iu logpKq

iu

ψ
`

λpvq, u ´ i,T
˘

s0 epr´qqT

˙

du

P2
`

λpvq,K ,T
˘

“
1
2
`

1
π

ż `8

0
Re

ˆ

e´iu logpKq

iu
ψ
`

λpvq, u,T
˘

˙

du

where λpvq “
`

s0, r , q, θ, κ, ξ, ρ, v
˘

.
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Pricing of European Options and Calibration Pricing

Practical aspects

Fixed-point quadratures

‚ I0 can be written as an integral against the Laguerre weighting function

I0 “

ż `8

0
f pvq

βα

Γpαq
vα´1 e´βv dv “

βα

Γpαq

ż `8

0
f pvqωpvqdv

where ωpvq “ vα´1 e´βv is the Laguerre weighting function.

‚ Then, for a fixed n ą 0 with ωi ’s and vi ’s the associated Laguerre weights and
nodes, I0 would be approximated by

rI n0 “
βα

Γpαq

n
ÿ

i“1

ωi f pvi q.

Quantization-based cubature method

Approximate I0 using the following quantization-based cubature formula

pIN0 “ E
“

f ppvN
0 q

‰

“

N
ÿ

i“1

f pvN
0,i qPppv

N
0 “ vN

0,i q.
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Pricing of European Options and Calibration Calibration

The implied volatility surface from the market

Euro Stoxx 50 - 26th September 2019: S0 “ 3541, r “ ´0.32%, q “ 0.225%
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Pricing of European Options and Calibration Calibration

Let
P

SH
“

 

pθ, κ, ξ, ρq P R`ˆR`ˆR`ˆr´1, 1s
(

the calibrable Stationary Heston parameters and

P
H
“

 

px , θ, κ, ξ, ρq P R`ˆR`ˆR`ˆR`ˆr´1, 1s
(

the calibrable Standard Heston parameters.

The problem (without penalization)

Find φ‹ that minimizes

min
φPP

ÿ

K

ˆ

σMarket
iv pK ,T q ´ σModel

iv pφ,K ,T q

σMarket
iv pK ,T q

˙2

where

‚ σMarket
iv pK ,T q is the implied volatility deduced from the market,

‚ σModel
iv pφ,K ,T q is the implied volatility of the EU Call/Put price

computed with a chosen model (Stationary Heston or Standard Heston).
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Pricing of European Options and Calibration Calibration

Calibration to expiry 50 days (T “ 50{365). Relative calibration errors: ă 3% for each implied volatility.
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The standard Heston model fails to produce the desired smile for very small maturities
while the Stationary model has no problem to generate it with 1 parameter less.

T. Montes Stationary Heston model 12 / 49



Pricing of European Options and Calibration Calibration

Term-structure comparison
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Figure: Term-structure of the volatility in function of T and K of both models
(left: Standard Heston and right: Stationary Heston) after calibration at 50
days.

T. Montes Stationary Heston model 13 / 49



Pricing of European Options and Calibration Calibration

Relative Errors comparison
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Pricing of European Options and Calibration Calibration

The obtained parameters

φ‹ ρ v0 θ κ ξ

Standard Heston ´0.74 0.152584 0.01487 80.05 5.22

Stationary Heston ´0.75 0.02744 593.46 36.80

Figure: Parameters obtained for both models after calibration without
penalization for options with maturity 50 days.

‚ They do not fulfil the Feller condition

ξ2 ď 2κθ.

Hence, we cannot simulate the model without reaching 0.
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Pricing of European Options and Calibration Calibration

New calibration problem (with penalization)

Find φ‹ that minimizes
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φPP
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` λmaxpξ2 ´ 2κθ, 0q

‚ Obtained parameters:

φ‹ ρ v0 θ κ ξ

Standard Heston ´0.83 0.0045 0.17023 2.19 1.04

Stationary Heston ´0.99 0.02691 19.28 1.15

Figure: Parameters obtained for both models after calibration with penalization
(λ “ 0.01) for options with maturity 50 days.
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Pricing of European Options and Calibration Calibration

Calibration to expiry 50 days (T “ 50{365). Relative calibration errors: ă 3% for each implied volatility.
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Pricing of European Options and Calibration Calibration

Term-structure comparison
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Figure: Term-structure of the volatility in function of T and K of both models
(left: Standard Heston and right: Stationary Heston) after calibration at 50
days.
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Pricing of European Options and Calibration Calibration

Relative Errors comparison
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d “ 1)

Definitions

Let ΓN “ tx
N
1 , . . . , x

N
N u Ă R, a subset of size N, called N-quantizer, we define

‚ The Voronoï partition of R induced by the N-quantizer

Ci pΓNq “
`

xNi´1{2, x
N
i`1{2

‰

, i P J1,N ´ 1K, CNpΓNq “
`

xNN´1{2, x
N
N`1{2

˘

.

Easily defined in dimension one.

‚ The Voronoï Quantization of the random variable X

pX ΓN “ ProjΓN
pX q “

N
ÿ

i“1

xNi 1XPCi pΓNq

‚ It is convenient to define the quadratic distortion function at level N

Q2,N : x “ pxN1 , . . . , x
N
N q ÞÝÑ E

”

min
iPJ1,NK

|X ´ xNi |
2
ı

“ }X ´ pXN}2
2
.
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d “ 1)

Figure: Gaussian Optimal Quantization
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d “ 1)

How to build an Optimal Quantizer?

1. Differentiate the Q2,N

The gradient is given by

∇Q2,Npx1:N
q “

ˆ

E
”

pxNi ´ X q1
XP
`

xN
i´1{2,x

N
i`1{2

‰

ı

˙

i“1,...,N

2. Solve the fixed point problem

Find x1:N that cancel the gradient

∇Q2,N

`

x1:N

˘

“ 0 ðñ xNi “

E
”

X 1
XP
`

xN
i´1{2,x

N
i`1{2

‰

ı

P
´

X P
`

xNi´1{2, x
N
i`1{2

‰

¯ , i “ 1, . . . ,N

ðñ xNi “
K

X

`

xNi`1{2

˘

´ K
X

`

xNi´1{2

˘

F
X

`

xNi`1{2

˘

´ F
X

`

xNi´1{2

˘ , i “ 1, . . . ,N.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Litterature

Recursive Quantization

‚ Recursive marginal quantization of the Euler scheme of a diffusion process by G.
Pagès and A. Sagna. (2015)

‚ Recursive Marginal Quantization of Higher-Order Schemes by J. Kienitz, T. A.
McWalter, E. Platen and R. Rudd. (2017)

‚ Product Markovian quantization of an Rd -valued Euler scheme of a diffusion
process with applications to finance by L. Fiorin, G. Pagès and A. Sagna. (2018)

Previous work on Heston model using Quantization

‚ Pricing via Quantization in Stochastic Volatility Models by G. Callegaro, L.
Fiorin and M. Grasselli. (2016)

‚ Fast Quantization of Stochastic Volatility Models by J. Kienitz, T. A. McWalter,
E. Platen and R. Rudd. (2017)

‚ American quantized calibration in stochastic volatility by G. Callegaro, L. Fiorin
and M. Grasselli. (2018)

‚ And more...
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Recursive Quantization: the idea (1/3)
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Figure: Start from a grid at time t0.
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Recursive Quantization: the idea (2/3)
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Figure: Simulation from t0 to t1 with a given discretization scheme F0.
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Recursive Quantization: the idea (3/3)
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Figure: Build the quantizer at time t1.
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Model transformation

$

’

&

’

%

dS
pνq
t

S
pνq
t

“ pr ´ qqdt `
a

vνt
`

ρdĂWt `
a

1´ ρ2dWt

˘

dvνt “ κpθ ´ vνt qdt ` ξ
a

vνt dĂWt

We will be working with pXt ,Ytq defined by

‚ For the volatility ÝÑ Yt “ eκt vνt .

‚ For the asset ÝÑ Xt “ logpS
pνq
t q.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

Milstein Scheme (preserving the positivity)

We consider the following boosted volatility process: let Yt “ eκt vνt , t P r0,T s.

dYt “ eκt κθdt ` ξ e
κt
2
a

YtdĂWt .

Now, if we look at the Milstein discretization scheme of Yt

sYtk`1 “M
rb,rσ

`

tk , sYtk ,
rZk`1

˘

where rZk`1 „ N p0, 1q and

M
rb,rσ

`

t, x , z
˘

“ x ´
rσpt, xq

2rσ1x pt, xq
` h

ˆ

rbpt, xq ´
rσrσ1x pt, xq

2

˙

`
rσrσ1x pt, xqh

2

˜

z `
1

?
hrσ1x pt, xq

¸2

with h “ T {n, n the number of time-steps and

rbpt, xq “ eκt κθ, rσpt, xq “ ξ
?
x e

κt
2 and rσ1xpt, xq “

ξ e
κt
2

2
?
x
.
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Then, the log-asset

Euler-Maruyama scheme

We consider the logarithm of the asset Xt “ logpS
pνq
t q, yielding

dXt “

´

r ´
vt
2

¯

dt `
?
vtdWt .

Now, using an Euler-Maruyama scheme for the discretization of Xt , we have
#

sXtk`1 “ Eb,σ
`

tk , sXtk ,
sYtk ,Zk`1

˘

sYtk`1 “M
rb,rσ

`

tk , sYtk ,
rZk`1

˘

where Zk`1 „ N p0, 1q and CorrpZk`1, rZk`1q “ ρ and

Eb,σ
`

t, x , y , z
˘

“ x ` bpt, x , yqh ` σpt, x , yq
?
h z

with
bpt, x , yq “ r ´

e´κt y

2
and σpt, x , yq “

a

e´κt y .
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First, the volatility

We build recursively the Markovian quantization tree p pYkqkPJ0,nK where pYk`1 is
the Voronoï quantization of rYk`1 defined by

rYk`1 “M
rb,rσ

`

tk , pYk , rZk`1
˘

, pYk`1 “ ProjΓY
N2

`

rYk`1
˘

with ΓY
N2
“ tyk`1

1 , . . . , yk`1
N2

u the optimal N2-quantizer of rYk`1 and
rZk`1 „ N p0, 1q.
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Figure: Rescaled Recursive quantization of the boosted-volatility process with
its associated weights from t “ 0 to t “ 60 days with a time step of 5 days
with grids of size N “ 10.
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Then, the log-asset

Now, using the fact that pYtqt has already been quantized and the
Euler-Maruyama scheme of pXtqt , we define the Markov quantized scheme

rXk`1 “ Eb,σ
`

tk , pXk , pYk ,Zk`1
˘

, pXk`1 “ ProjΓX
N1

`

rXk`1
˘

with ΓX
N1
“ txk1 , . . . , x

k
N1
u the optimal N1-quantizer of rXk`1 and

Zk`1 „ N p0, 1q.
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L2-error

Notations
pUk “ p pXk , pYkq is the product recursive quantization of sUk “ p sXk , sYkq, the
time-discretized processes defined by

sUk “ Fk´1p sUk´1,Zkq, with Fkpu,Zq “

˜

Eb,σ

`

tk , x , y ,Z
1
k`1

˘

M
rb,rσ

`

tk , y ,Z
2
k`1

˘

¸

.

where Zk “ pZ
1
k ,Z

2
k q is a standardized correlated Gaussian vector.

What about the error induced by the recursive quantization?

Standard results of the type

} pUk ´ sUk}2 ď

k
ÿ

j“1

Cj

`

N1,j ˆ N2,j
˘´1{2

when the schemes Fkpu, zq are Lipschitz in u.
But this is not our case... (CIR model)
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L2-error

Proposition

For every k “ 0, . . . , n

} pUk ´ sUk}2 ď

k
ÿ

j“0

rAj,k

`

N1,j ˆ N2,j
˘´1{2

` Bk

?
h

where

rAj,k “ 2
p´2
2p C 2

pAj,k

ˆ

2p
p
2´1qjβj

p}
pU0}

p
2
` αp

1´ 2p
p
2´1qjβj

p

1´ 2
p
2´1βp

˙1{p

with

Aj,k “ 2
k´j
2 e

?
h

2 pk´jq and Bk “ CT phq
k´1
ÿ

j“0

2
k´1´j

2 e
?

h
2 pk´1´jq

where
ř

H “ 0 by convention and CT phq “ Op1q.
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Bermudan Options

Its price, at time t0, is given by

V0 “ sup
τPtt1,¨¨¨ ,tnu

E
“

e´rτ ψτ pXτ ,Yτ q | F t0

‰

.

Hence, we can define recursively the sequence of random variable Lp-integrable
pVkq0ďkďn

#

Vn “ e´rtn ψnpXn,Ynq,

Vk “ max
`

e´rtk ψkpXk ,Ykq,ErVk`1 | Fk s
˘

, 0 ď k ď n ´ 1

called Backward Dynamical Programming Principle.
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Bermudan Options

Using the Product Recursive Quantizer

We approximate the Backward Dynamical Programming Principle by the
following sequence involving the couple p pXk , pYkq0ďkďn

$

&

%

pVn “ e´rtn ψnp pXn, pYnq,

pVk “ max
´

e´rtk ψkp pXk , pYkq,E
“

pVk`1 | p pXk , pYkq
‰

¯

, k “ 1, . . . , n ´ 1.
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Bermudan Options

Using the Product Recursive Quantizer

The last equation can be rewritten
$

’

’

&

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rtn ψnpx

n
i1 , y

n
i2q,

pvkpx
k
i1 , y

k
i2q “ max

˜

e´rtk ψkpx
k
i1 , y

k
i2q,

N1
ÿ

j1“1

N2
ÿ

j2“1

πk
pi1,i2q,pj1,j2q

pvk`1px
k`1
j1

, yk`1
j2

q

¸

,

with πk
pi1,i2q,pj1,j2q

“ P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yk

i2

˘

.

Finally, the approximation of the price of the bermudan option is given by

E
“

pvkpx0, pY0q
‰

“

N2
ÿ

i“1

pi pvkpx0, y
0
i q

with pi “ Pp pY0 “ y0
i q.
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Bermudan Options - Numerical examples
(T “ 0.5 - Call/Put with K “ 100)
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Figure: Prices of Bermudan options in the stationary Heston model given by
product hybrid recursive quantization with fixed value N2 “ 10.
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Barrier Options

A Barrier option is a path-dependent financial product whose payoff at maturity
date T depends on the value of the process XT at date T and its maximum or
minimum over the period r0,T s.
More precisely, we are interested by options with the following types of payoff h

h “ f pXT q1tsuptPr0,Ts XtPIu or h “ f pXT q1tinftPr0,Ts XtPIu

where I is an unbounded interval of R, T is the maturity date and f can be any
vanilla payoff function (Call, Put, Spread, Butterfly, ...).
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Barrier Options

Using a representation formula

Now, using the representation formula based on the conditional law of the
Brownian Bridge for the price of up-and-out options sPUO and down-and-out
options sPDO

sPUO “ e´rT
E
”

f p sXT q1suptPr0,Ts sXtďL

ı

“ e´rT
E

«

f p sXT q

n´1
ź

k“0

G k
pX k ,Y k q, sXk`1

pLq

ff

where L is the barrier and

G k
px,yq,zpuq “

´

1´ e
´2n px´uqpz´uq

Tσ2ptk ,x,yq
¯

1tuěmaxpx,zqu .

Equivalent formulas for other standard Barrier options.
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Barrier Options

Using the Product Recursive Quantizer

Finally, replacing p sXk , sYkq by p pXk , pYkq and using a recursive algorithm yield
$

&

%

pVn “ e´rT f p pXnq,

pVk “ E
”

gkp pXk , pYk , pXk`1q pVk`1 | p pXk , pYkq

ı

, 0 ď k ď n ´ 1

that can be rewritten
$

’

’

&

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rT f pxni1q,

pvkpx
k
i1 , y

n
i2q “

N1
ÿ

j1“1

N2
ÿ

j2“1

πk
pi1,i2q,pj1,j2q

pvk`1px
k`1
j1

, yk`1
j2

qgkpx
k
i1 , y

k
i2 , x

k`1
j1

q,

with πk
pi1,i2q,pj1,j2q

“ P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yk

i2

˘

and
gkpx , y , zq “ G k

px,yq,zpLq.
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Barrier Options - Numerical example
(T “ 0.5 - Call with K “ 100 and L “ 115)
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50
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Figure: Prices of Barrier options with strike K “ 100 in the stationary Heston
model given by product hybrid recursive quantization with fixed value N2 “ 10.
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Conclusion

Conclusion

So far
‚ Introduced a model with steeper smile volatility

surface for short maturities than Standard Heston
model.

‚ Fast numerical solution for the pricing of European,
Bermudan and Barrier options.

‚ Calibration.

And more..
‚ Asian Options
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Conclusion

Thank you for your
attention!
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