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The Model

Stationary Heston model

The model

Dynamic of the asset price process (5/°)¢=0 and its volatility (v¢)¢=0 is given by
dS° = S5/° ((r — q)dt + \/vedW;)
{ dve = k(0 — ve)dt + E/ved W
e So = sp is the initial value of the process, r the spot rate, g the dividend rate,
e x the mean reverting term,

e 0 the long run average price variance,

e £ is the volatility of the volatility,

e (W, W) is a standard correlated 2d Brownian motion with correlation p,
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Stationary Heston model

The model

Dynamic of the asset price process (5/°)¢=0 and its volatility (v¢)¢=0 is given by

dS® = S ((r — q)dt + \/vedW,)
dve = k(0 — ve)dt + E/ved W

So = so is the initial value of the process, r the spot rate, g the dividend rate,

e x the mean reverting term,

0 the long run average price variance,

e £ is the volatility of the volatility,

e (W, W) is a standard correlated 2d Brownian motion with correlation p,

vo ~ M, B) with 8 = (2k)/£? and a = 68.

Remark: 4 parameters = 1 less than the Standard Heston Model.

History

Introduced by Pagés et Panloup in 2009 then studied by Jacquier and Shi in 2017.
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Pricing of European Options and Calibration Pricing

Generic expression

The price of the European option on the asset S7° is given by
o =E[e T p(Sy)].
After preconditioning by v, we have
b=E [E [e T o(S%) | a(vo)]] — E[f(v)]

where f(v) is the price of the European option in the Standard Heston model
with deterministic initial conditions for a given initial volatility v.
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Pricing of European Options and Calibration Pricing

Example - Call option

If ¢ is the payoff of a Call option then f is simply the price given by Fourier
transform in the standard Heston model of the European Call Option. Then

o =B[e(SP — K)4] = B[ C(d(w). K. T)]

with
C(d)(V), Kv T) = S0 equ P1(¢(V), Ka T) - KeirT P2(¢(V)’ Kv T)
and
1 1 [t e—iulog(K) 1/}((;5(‘/)’ u—i, T)
Pi(o(v), K =57 p Jo Re( S el—aT ) du
1 1 [t 7lu|og(K)
Py(¢p(v), K =5+ ;L Re< Y(p(v), u, T))du

where ¢(v) = (So,r,q, p, 0, k,&, V).
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Pricing of European Options and Calibration Pricing

Practical aspects

Fixed-point quadratures

e Iy can be written as an integral against the Laguerre weighting function
+00 ﬁa /Ba +00
I:J f(v vele P gy = J f(v)w(v)dv
=) M (@) Jo )

where w(v) = v@ e P

is the Laguerre weighting function.

e Then, for a fixed n > 0 with w;'s and v;'s the associated Laguerre weights and
nodes, o would be approximated by

Ba
MNa) :

Quantization-based cubature method

Approximate Iy using the following quantization-based cubature formula

B’ = w,-f(v,-).
=1

4

N
B =E[f@"] = f(v) P = vh)-

i=1
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Pricing of European Options and Calibration Calibration

The implied volatility surface from the market

Euro Stoxx 50 - 26th September 2019:
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Pricing of European Options and Calibration Calibration
The problem

We search for the set of parameters ¢* ((p*, 0%, k*, &%) or (p*, 0%, &*, &%, v*))
solution to the penalized and weighted following minimization problem

Market _ Model 2
WK(UiV (K, T) — 0,* (¢, K, T)> + A0+ K+

min o.il\\l/larket ( ;(7 T)

b=(p,0,5:8)

where
o gMarket(K T) is the implied volatility deduced from the market,

o gModel(¢ K, T) is the implied volatility of the EU Call price computed for
a model: Stationary Heston with parameters (p,, %, &) or Standard
Heston with parameters (p, 6, %, &, v),

e wy are weights chosen before the optimization in order to give a greater
focus on some strikes,

e ) is a penalization factor (A = 0.00001).
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After Calibration - Standard Heston surface

Heston Heston

p = —0.756, v = 0.079, 6 = 0.016, & = 39.06 and & = 2.69
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Pricing of European Options and Calibration Calibration

After Calibration - Stationary Heston surface

Stationary Heston Stationary Heston

&
implied Volatility

implied Volatility

0205

p=—0.789, § = 0.028, x = 135.72 and o = 8.07
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g of European Options and Calibra

C

ration

Calibration to expiry 50 days (T = 50/365). Relative calibration errors: < 3% for each implied volatility.
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The standard Heston model fails to produce the desired smile for very small maturities
while the Stationary model has no problem to generate it with 1 parameter less.
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Pricing of European Options and Calibration Calibration

Heston Stationary Heston

Implied Volatility
Implied Volatility

E) 975 1025 i) 120
K

Figure: Term-structure of the volatility in function of T and K of both models
(left: Standard Heston and right: Stationary Heston) after calibration at 50
days.
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

Definitions

Let Ty = {xlN, ... ,x,’VV} c R, a subset of size N, called N-quantizer, we define

e The Voronoi partition of R induced by the N-quantizer

G(Tn) = (3 1o xta)s T€[LN=1], Cn(Tw) = (XN_1/2 XN 41/2)-
Easily defined in dimension one.

e The Voronoi Quantization of the random variable X

N
XM = Projr, (X) = > xM Ixec (ry)
i=1
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

Definitions

Let Ty = {xlN, ... ,xﬁ} c R, a subset of size N, called N-quantizer, we define

e The Voronoi partition of R induced by the N-quantizer

G(Tn) = (3 1o xta)s T€[LN=1], Cn(Tw) = (XN_1/2 XN 41/2)-
Easily defined in dimension one.

e The Voronoi Quantization of the random variable X

N
XM = Projr, (X) = > xM Ixec (ry)
i=1

e |t is convenient to define the quadratic distortion function at level N
Qo i x = (', xi) — B min (X — x| = X - X2,

ie[1,N]
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

PN =P(XeC@y)=P(X =xN)
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Figure: Gaussian Optimal Quantization
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

How to build an Optimal Quantizer?

1. Differentiate the Q>

The gradient is given by

\% QZ,N(Xl;N) = (E [(XIN - X) ]IXe(xf’!l/z,XfAjrl/z] ]) i1 N

=1,...,

2. Solve the fixed point problem

Find x7.y that cancel the gradient

E [X ]IXE(X.N xN ] ]

VQnlx,) =0 = x'= CrRTRE L =1, N
P (X € (Xi,!1/2’xilylr1/2])

s N _ Kx (X:Iil 2) = Kel(x N1/2) _1 N
’ Fy (X:,L o) = Filx /N1/2)
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Litterature

Recursive Quantization

e Recursive marginal quantization of the Euler scheme of a diffusion process by G.
Pagés and A. Sagna. (2015)

e Recursive Marginal Quantization of Higher-Order Schemes by J. Kienitz, T. A.
McWalter, E. Platen and R. Rudd. (2017)

o Product Markovian quantization of an RY-valued Euler scheme of a diffusion
process with applications to finance by L. Fiorin, G. Pagés and A. Sagna. (2018)

Previous work on Heston model using Quantization

e Pricing via Quantization in Stochastic Volatility Models by G. Callegaro, L.
Fiorin and M. Grasselli. (2016)

e Fast Quantization of Stochastic Volatility Models by J. Kienitz, T. A. McWalter,
E. Platen and R. Rudd. (2017)

e American quantized calibration in stochastic volatility by G. Callegaro, L. Fiorin
and M. Grasselli. (2018)

e And more... )
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Model transformation

dSy = 5% (rdt + \/vidW,)
dve = k(0 — vp)dt + &/ved W,

V¢ is autonomous, hence 1d problem.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Model transformation

dSy = 5% (rdt + \/vidW,)
dve = k(0 — vp)dt + &/ved W,

V¢ is autonomous, hence 1d problem.

We will be working with (X, Y;) that are transformation of (5°, v;)

e For the volatility — Y; = et v;.

e For the asset —> X; = log(5,°).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

Milstein Scheme (preserving the positivity)
We consider the following boosted volatility process: let Y; = e v,, t € [0, T].

dY: = " kOdt + £ \/YidW,.
Now, if we look at the Milstein discretization scheme of Y;

?thrl = Mé&(tk’ kaa ZkJrl)

where Z,1 ~ N(0,1) and

2
(t, x) ~ 557 (t, x) o5 (t, x)A 1
MEA (t,x,z):x—m-&-A(b(t,x)— > >+ > <Z+\/Zfr;(t X))

ge¥

2%
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset

Euler-Maruyama scheme

We consider the logarithm of the asset X; = log(S5;°), yielding
dX; = (r - g) dt + /VedW,.

Now, using an Euler-Maruyama scheme for the discretization of X;, we have
Xeerr = Ebo (tis Xees Yoo, Zis1)
{vw = M2 (b Vo Zir)
where Z,1 ~ N(0,1) and Corr(ZkH,Z(H) = p and
SbA,U(t,x,y,z) =x+ b(t,x,y)A + a(t,x,y)\/Zz

with
e—mt y

b(t,x,y) =r— 5 and o(t,x,y) =+/e rty.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

We build recursively the Markovian quantization tree (\A/k)ke[[omﬂ where \A/tkﬂ is
the Voronoi quantization of Yy, defined by

Yit1 = Mfﬁ(tk, Yi, Zis1), Ytera = Projry. (Yis1)
with F}V/z = {y1k+1, . ,y/\‘ljl} the optimal N>-quantizer of \N/k+1 and

ZkJrl ~ N(O, 1)
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset

Now, using the fact that (Y;); has already been quantized and the
Euler-Maruyama scheme of (X;):, we define the Markov quantized scheme

Xier1 = E8, (ti, Xis Yiey Zii1), Xiep1 = Projr ()?k+1>

with l‘ﬁl = {xf,... ,x,’\‘,l} the optimal N;-quantizer of Xi1 and
Zit1 ~ N(0,1).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Its price, at time tg, is given by

W = sup E[eith/}T(X‘F?YTH]:tO]'

T€{ty, " ,tn}

Hence, we can define recursively the sequence of random variable LP-integrable
(Vk)Oékén

V, = e %(Xn, Yn)a
Vie = max (e "™ ¢ (Xie, Yi), B[ Vi1 | i) 0<k<n-1

called Backward Dynamical Programming Principle.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Using the Product Recursive Quantizer

We approximate the Backward Dynamical Programming Principle by the
following sequence involving the couple (Xk, Yk)o<k<n

‘7n =e wn()?nv ?n),
‘7k = max (eirtk Q/Jk()?k, \/}k),E [\7;(_,_1 | ()?k, ?k)]>, k = ]., e, n— 1.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Using the Product Recursive Quantizer

The last equation can be rewritten

/‘;n(xl!:7yi,21) = eirtn wn(xi:7yi,21)a

N1 Nz
~ ok ky _ —rty kK k k - k+1  k+1
Vk(X’i’yl'z) =max| e wk(xﬁ’yiz)’ Z Z 7‘_(/'1-,/'2)a(J'1-J'2)Vk""l(x_/l Vi ) ’
Ji=1j2=1
: k _ Y o Jk+tl O k+l v ok v ok
with T (i) Gada) = P (Xk+1 =X, Yir1 = Y | Xk = xi, Yk = y,-z).

Finally, the approximation of the price of the bermudan option is given by

N
E [Vi(x0, Yo)| = Z pi Vi(x0, ¥7)
izl

with p; = P(Yo = y?).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

A Barrier option is a path-dependent financial product whose payoff at maturity
date T depends on the value of the process X7 at date T and its maximum or
minimum over the period [0, T].

More precisely, we are interested by options with the following types of payoff h

h = f(XT) Lisup,cio.r) Xeel} or  h=f(XT) Linf,0. 1) Xecl}

where / is an unbounded interval of R, T is the maturity date and f can be any
vanilla payoff function (Call, Put, Spread, Butterfly, ...).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

Using a representation formula

Now, using the representation formula based on the conditional law of the
Brownian Bridge for the price of up-and-out options Pyo and down-and-out
options Ppo

n—1
Puyo = e TE [f(XT) ‘ﬂsup,E[g,T] XrSL] =e T E |:f(X7-) H G&k’vk),)—(k+1(L)
k=0
where L is the barrier and

_2,,%
G(’;’y)’z(u) = <1 —e To2(ty,x,y) ) ]l{UZmax(x,z)} .

Equivalent formulas for other standard Barrier options.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

Using the Product Recursive Quantizer

Finally, replacing (X, Yx) by ()A(k, \A/k) and using a recursive algorithm yield

Vo =e T F(X,),
\7;( E [gk()?ka ?k;)?k+1)\7k+1 ‘ ()?k, ?k)] s 0 < k <n-— 1

that can be rewritten

Va(Xi, yi) = e 7T f(x),

N1 Nao
= k ny __ k =~ k+1  k+1 k k _k+1
Vk(Xilayiz)* Z Zﬂ-(il‘jz)"(jl’jz)vk+l(le Y )gk(x,-l,y,-27><j )»
Ji=1j2=1

with Wé(il,iz).,(jl,jz) =P ()AQ(H = Xfi“, \A/Hl = yjl:rl | )AQ( = Xl-,;., \A/k = y,-i) and
g(x.y,2) = G ), (L).
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Conclusion

e Introduced a model with steeper smile volatility
surface for short maturities than Standard Heston
model.

e Fast numerical solution for the pricing of European,
Bermudan and Barrier options.

e Calibration.

And more..

e Asian Options
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