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The Model

Stationary Heston model

The model
Dynamic of the asset price process pSv0

t qtě0 and its volatility pvtqtě0 is given by
#

dSv0
t “ Sv0

t ppr ´ qqdt `
?
vtdWtq

dvt “ κpθ ´ vtqdt ` ξ
?
vtdĂWt

‚ S0 “ s0 is the initial value of the process, r the spot rate, q the dividend rate,

‚ κ the mean reverting term,

‚ θ the long run average price variance,

‚ ξ is the volatility of the volatility,

‚ pW , ĂW q is a standard correlated 2d Brownian motion with correlation ρ,

‚ v0 „ Γpα, βq with β “ p2κq{ξ2 and α “ θβ.
Remark: 4 parameters ùñ 1 less than the Standard Heston Model.

History
Introduced by Pagès et Panloup in 2009 then studied by Jacquier and Shi in 2017.
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Pricing of European Options and Calibration Pricing

Generic expression

The price of the European option on the asset Sv0
T is given by

I0 “ E
“

e´rT ϕpSv0
T q

‰

.

After preconditioning by v0, we have

I0 “ E
”

E
“

e´rT ϕpSv0
T q | σpv0q

‰

ı

“ E
“

f pv0q
‰

where f pvq is the price of the European option in the Standard Heston model
with deterministic initial conditions for a given initial volatility v .
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Pricing of European Options and Calibration Pricing

Example - Call option

If ϕ is the payoff of a Call option then f is simply the price given by Fourier
transform in the standard Heston model of the European Call Option. Then

I0 “ E
“

e´rT pSv0
T ´ K q`

‰

“ E
”

C
`

φpv0q,K ,T
˘

ı

with

C pφpvq,K ,T q “ S0 e´qT P1
`

φpvq,K ,T
˘

´ K e´rT P2
`

φpvq,K ,T
˘

and

P1
`

φpvq,K ,T
˘

“
1
2
`

1
π

ż `8

0
Re

ˆ

e´iu logpKq

iu

ψ
`

φpvq, u ´ i ,T
˘

S0 epr´qqT

˙

du

P2
`

φpvq,K ,T
˘

“
1
2
`

1
π

ż `8

0
Re

ˆ

e´iu logpKq

iu
ψ
`

φpvq, u,T
˘

˙

du

where φpvq “ pS0, r , q, ρ, θ, κ, ξ, vq.
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Pricing of European Options and Calibration Pricing

Practical aspects

Fixed-point quadratures

‚ I0 can be written as an integral against the Laguerre weighting function

I0 “

ż `8

0
f pvq

βα

Γpαq
vα´1 e´βv dv “

βα

Γpαq

ż `8

0
f pvqωpvqdv

where ωpvq “ vα´1 e´βv is the Laguerre weighting function.

‚ Then, for a fixed n ą 0 with ωi ’s and vi ’s the associated Laguerre weights and
nodes, I0 would be approximated by

rI n0 “
βα

Γpαq

n
ÿ

i“1

ωi f pvi q.

Quantization-based cubature method

Approximate I0 using the following quantization-based cubature formula

pIN0 “ E
“

f ppvN
0 q

‰

“

N
ÿ

i“1

f pvN
0,i qPppv

N
0 “ vN

0,i q.
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Pricing of European Options and Calibration Calibration

The implied volatility surface from the market

Euro Stoxx 50 - 26th September 2019: S0 “ 3541, r “ ´0.32%, q “ 0.225%
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Pricing of European Options and Calibration Calibration

The problem

We search for the set of parameters φ‹ (pρ‹, θ‹, κ‹, ξ‹q or psρ‹, sθ‹, sκ‹, sξ‹, sv‹q)
solution to the penalized and weighted following minimization problem

min
φ“pρ,θ,κ,ξq

ÿ

K ,T

ωK

ˆ

σMarket
iv pK ,T q ´ σModel

iv pφ,K ,T q

σMarket
iv pK ,T q

˙2

` λpθ ` κ` ξq

where

‚ σMarket
iv pK ,T q is the implied volatility deduced from the market,

‚ σModel
iv pφ,K ,T q is the implied volatility of the EU Call price computed for

a model: Stationary Heston with parameters pρ, θ, κ, ξq or Standard
Heston with parameters psρ, sθ, sκ, sξ, svq,

‚ ωK are weights chosen before the optimization in order to give a greater
focus on some strikes,

‚ λ is a penalization factor (λ “ 0.00001).
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Pricing of European Options and Calibration Calibration

After Calibration - Standard Heston surface

sρ “ ´0.756, sv “ 0.079, sθ “ 0.016, sκ “ 39.06 and sσ “ 2.69
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Pricing of European Options and Calibration Calibration

After Calibration - Stationary Heston surface

ρ “ ´0.789, θ “ 0.028, κ “ 135.72 and σ “ 8.07
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Pricing of European Options and Calibration Calibration

Calibration to expiry 50 days (T “ 50{365). Relative calibration errors: ă 3% for each implied volatility.

The standard Heston model fails to produce the desired smile for very small maturities
while the Stationary model has no problem to generate it with 1 parameter less.
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Pricing of European Options and Calibration Calibration

Figure: Term-structure of the volatility in function of T and K of both models
(left: Standard Heston and right: Stationary Heston) after calibration at 50
days.
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d “ 1)

Definitions

Let ΓN “
 

xN1 , . . . , x
N
N

(

Ă R, a subset of size N, called N-quantizer, we define

‚ The Voronoï partition of R induced by the N-quantizer

Ci pΓNq “
`

xNi´1{2, x
N
i`1{2

‰

, i P J1,N ´ 1K, CNpΓNq “
`

xNN´1{2, x
N
N`1{2

˘

.

Easily defined in dimension one.

‚ The Voronoï Quantization of the random variable X

pX ΓN “ ProjΓN
pX q “

N
ÿ

i“1

xNi 1XPCi pΓNq

‚ It is convenient to define the quadratic distortion function at level N

Q2,N : x “ pxN1 , . . . , x
N
N q ÞÝÑ E

”

min
iPJ1,NK

|X ´ xNi |
2
ı

“ }X ´ pXN}2
2
.
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d “ 1)

Figure: Gaussian Optimal Quantization
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d “ 1)

How to build an Optimal Quantizer?

1. Differentiate the Q2,N

The gradient is given by

∇Q2,Npx1:N
q “

ˆ

E
”

pxNi ´ X q1
XP
`

xN
i´1{2,x

N
i`1{2

‰

ı

˙

i“1,...,N

2. Solve the fixed point problem

Find x1:N that cancel the gradient

∇Q2,N px1:N
q “ 0 ðñ xNi “

E
”

X 1
XP
`

xN
i´1{2,x

N
i`1{2

‰

ı

P
´

X P
`

xNi´1{2, x
N
i`1{2

‰

¯ , i “ 1, . . . ,N

ðñ xNi “
K

X

`

xNi`1{2

˘

´ K
X

`

xNi´1{2

˘

F
X

`

xNi`1{2

˘

´ F
X

`

xNi´1{2

˘ , i “ 1, . . . ,N.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Litterature

Recursive Quantization

‚ Recursive marginal quantization of the Euler scheme of a diffusion process by G.
Pagès and A. Sagna. (2015)

‚ Recursive Marginal Quantization of Higher-Order Schemes by J. Kienitz, T. A.
McWalter, E. Platen and R. Rudd. (2017)

‚ Product Markovian quantization of an Rd -valued Euler scheme of a diffusion
process with applications to finance by L. Fiorin, G. Pagès and A. Sagna. (2018)

Previous work on Heston model using Quantization

‚ Pricing via Quantization in Stochastic Volatility Models by G. Callegaro, L.
Fiorin and M. Grasselli. (2016)

‚ Fast Quantization of Stochastic Volatility Models by J. Kienitz, T. A. McWalter,
E. Platen and R. Rudd. (2017)

‚ American quantized calibration in stochastic volatility by G. Callegaro, L. Fiorin
and M. Grasselli. (2018)

‚ And more...
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Model transformation

#

dSv0
t “ Sv0

t prdt `
?
vtdWtq

dvt “ κpθ ´ vtqdt ` ξ
?
vtdĂWt

Remark
vt is autonomous, hence 1d problem.

We will be working with pXt ,Ytq that are transformation of pSv0
t , vtq

‚ For the volatility ÝÑ Yt “ eκt vt .

‚ For the asset ÝÑ Xt “ logpSv0
t q.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

Milstein Scheme (preserving the positivity)

We consider the following boosted volatility process: let Yt “ eκt vt , t P r0,T s.

dYt “ eκt κθdt ` ξ e
κt
2
a

YtdĂWt .

Now, if we look at the Milstein discretization scheme of Yt

sYtk`1 “M∆
rb,rσ

`

tk , sYtk ,
rZk`1

˘

where rZk`1 „ N p0, 1q and

M∆
rb,rσ

`

t, x , z
˘

“ x ´
rσpt, xq

2rσ1x pt, xq
`∆

ˆ

rbpt, xq ´
rσrσ1x pt, xq

2

˙

`
rσrσ1x pt, xq∆

2

˜

z `
1

?
∆rσ1x pt, xq

¸2

with

rbpt, xq “ eκt κθ, rσpt, xq “ ξ
?
x e

κt
2 and rσ1xpt, xq “

ξ e
κt
2

2
?
x
.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset

Euler-Maruyama scheme

We consider the logarithm of the asset Xt “ logpSv0
t q, yielding

dXt “

´

r ´
vt
2

¯

dt `
?
vtdWt .

Now, using an Euler-Maruyama scheme for the discretization of Xt , we have
#

sXtk`1 “ E∆
b,σ

`

tk , sXtk ,
sYtk ,Zk`1

˘

sYtk`1 “M∆
rb,rσ

`

tk , sYtk ,
rZk`1

˘

where Zk`1 „ N p0, 1q and CorrpZk`1, rZk`1q “ ρ and

E∆
b,σ

`

t, x , y , z
˘

“ x ` bpt, x , yq∆` σpt, x , yq
?

∆ z

with

bpt, x , yq “ r ´
e´κt y

2
and σpt, x , yq “

a

e´κt y .
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

We build recursively the Markovian quantization tree p pYkqkPJ0,nK where pYtk`1 is
the Voronoï quantization of rYk`1 defined by

rYk`1 “M∆
rb,rσ

`

tk , pYk , rZk`1
˘

, pYtk`1 “ ProjΓY
N2

`

rYk`1
˘

with ΓY
N2
“ tyk`1

1 , . . . , yk`1
N2

u the optimal N2-quantizer of rYk`1 and
rZk`1 „ N p0, 1q.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset

Now, using the fact that pYtqt has already been quantized and the
Euler-Maruyama scheme of pXtqt , we define the Markov quantized scheme

rXk`1 “ E∆
b,σ

`

tk , pXk , pYk ,Zk`1
˘

, pXk`1 “ ProjΓX
N1

´

rXk`1

¯

with ΓX
N1
“ txk1 , . . . , x

k
N1
u the optimal N1-quantizer of rXk`1 and

Zk`1 „ N p0, 1q.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Its price, at time t0, is given by

V0 “ sup
τPtt1,¨¨¨ ,tnu

E
“

e´rτ ψτ pXτ ,Yτ q | F t0

‰

.

Hence, we can define recursively the sequence of random variable Lp-integrable
pVkq0ďkďn

#

Vn “ e´rtn ψnpXn,Ynq,

Vk “ max
`

e´rtk ψkpXk ,Ykq,ErVk`1 | Fk s
˘

, 0 ď k ď n ´ 1

called Backward Dynamical Programming Principle.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Using the Product Recursive Quantizer

We approximate the Backward Dynamical Programming Principle by the
following sequence involving the couple p pXk , pYkq0ďkďn

$

&

%

pVn “ e´rtn ψnp pXn, pYnq,

pVk “ max
´

e´rtk ψkp pXk , pYkq,E
“

pVk`1 | p pXk , pYkq
‰

¯

, k “ 1, . . . , n ´ 1.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Using the Product Recursive Quantizer

The last equation can be rewritten
$

’

’

&

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rtn ψnpx

n
i1 , y

n
i2q,

pvkpx
k
i1 , y

k
i2q “ max

˜

e´rtk ψkpx
k
i1 , y

k
i2q,

N1
ÿ

j1“1

N2
ÿ

j2“1

πk
pi1,i2q,pj1,j2q

pvk`1px
k`1
j1

, yk`1
j2

q

¸

,

with πk
pi1,i2q,pj1,j2q

“ P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yk

i2

˘

.

Finally, the approximation of the price of the bermudan option is given by

E
“

pvkpx0, pY0q
‰

“

N2
ÿ

i“1

pi pvkpx0, y
0
i q

with pi “ Pp pY0 “ y0
i q.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

A Barrier option is a path-dependent financial product whose payoff at maturity
date T depends on the value of the process XT at date T and its maximum or
minimum over the period r0,T s.
More precisely, we are interested by options with the following types of payoff h

h “ f pXT q1tsuptPr0,Ts XtPIu or h “ f pXT q1tinftPr0,Ts XtPIu

where I is an unbounded interval of R, T is the maturity date and f can be any
vanilla payoff function (Call, Put, Spread, Butterfly, ...).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

Using a representation formula

Now, using the representation formula based on the conditional law of the
Brownian Bridge for the price of up-and-out options sPUO and down-and-out
options sPDO

sPUO “ e´rT
E
”

f p sXT q1suptPr0,Ts sXtďL

ı

“ e´rT
E

«

f p sXT q

n´1
ź

k“0

G k
pX k ,Y k q, sXk`1

pLq

ff

where L is the barrier and

G k
px,yq,zpuq “

´

1´ e
´2n px´uqpz´uq

Tσ2ptk ,x,yq
¯

1tuěmaxpx,zqu .

Equivalent formulas for other standard Barrier options.
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Barrier Options

Using the Product Recursive Quantizer

Finally, replacing p sXk , sYkq by p pXk , pYkq and using a recursive algorithm yield
$

&

%

pVn “ e´rT f p pXnq,

pVk “ E
”

gkp pXk , pYk , pXk`1q pVk`1 | p pXk , pYkq

ı

, 0 ď k ď n ´ 1

that can be rewritten
$

’

’

&

’

’

%

pvnpx
n
i1 , y

n
i2q “ e´rT f pxni1q,

pvkpx
k
i1 , y

n
i2q “

N1
ÿ

j1“1

N2
ÿ

j2“1

πk
pi1,i2q,pj1,j2q

pvk`1px
k`1
j1

, yk`1
j2

qgkpx
k
i1 , y

k
i2 , x

k`1
j1

q,

with πk
pi1,i2q,pj1,j2q

“ P
`

pXk`1 “ xk`1
j1

, pYk`1 “ yk`1
j2

| pXk “ xki1 ,
pYk “ yk

i2

˘

and
gkpx , y , zq “ G k

px,yq,zpLq.
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Conclusion

Conclusion

So far
‚ Introduced a model with steeper smile volatility

surface for short maturities than Standard Heston
model.

‚ Fast numerical solution for the pricing of European,
Bermudan and Barrier options.

‚ Calibration.

And more..
‚ Asian Options
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Conclusion

Thank you for your
attention!
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