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The Model Definition

Stationary and Randomized Heston model

The model

Dynamic of the asset price process (S:):=0 and its volatility (v¢)e=0 is given by
dS: = S (rdt + \/vedW;)
{ dvi = k(0 — v)dt + .g\/thWt
e So = s5p is the initial value of the process,
e r the mean reverting term,

e 6 the long run average price variance,

e ¢ is the volatility of the volatility,

o (W, W) is a standard correlated 2d Brownian motion with correlation p,
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Stationary and Randomized Heston model

The model

Dynamic of the asset price process (S:):=0 and its volatility (v¢)e=0 is given by
dSt = St (I’dt + \/thWt)
th = K(e — Vt)dt + fﬁdwt

e So = s5p is the initial value of the process,

e x the mean reverting term,

0 the long run average price variance,

£ is the volatility of the volatility,

(w, W) is a standard correlated 2d Brownian motion with correlation p,

o vo = L(v) with vy ~ I'(a, 8) with 8 = (2x)/¢2 and a = 3.

Introduced by G. Pagés et F. Panloup in 2009 and later, studied by A.
Jacquier and F. Shi in 2017.
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Implied Volailty

Implied Volatility T:3M rho:-0.5 N:10
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

Definitions

Let Ty = {xlN, ... ,x,’VV} c R, a subset of size N, called N-quantizer, we define:

e The Voronoi partition of R induced by the N-quantizer:

G(Tw) = (Xil\il/2axi,i1/2]a ie[L,N-1], Cu(Tn) = (XN—1/2,Xﬁ+1/2)~
Easily defined in dimension one.

e The Voronoi Quantization of the random variable X:

N
XM = Projr, (X) = > xM Ixec (ry)
i=1
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Definitions

Let Ty = {xlN, ... ,xﬁ} c R, a subset of size N, called N-quantizer, we define:

e The Voronoi partition of R induced by the N-quantizer:

G(Tw) = (Xil\il/2axi,i1/2]a ie[L,N-1], Cu(Tn) = (XN—1/2,Xﬁ+1/2)~
Easily defined in dimension one.

e The Voronoi Quantization of the random variable X:

N
XM = Projr, (X) = > xM Ixec (ry)
i=1

e |t is convenient to define the quadratic distortion function at level N:
Qo i x = (', xi) — B min (X — x| = X - X2,

ie[1,N]
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)
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Quantization based Numerical Methodology Quick reminder on Optimal Quantization (for d = 1)

How to build an Optimal Quantizer?

1. Differentiate the Q>

The gradient is given by

\% QZ7N<X1:N) = (E [(XIN B X) ILXE(X('NA/z’Xi,\il/z]])i

2. Solve the fixed point problem

Then, find x1.n that cancel the gradient

E X]IX xN o xN
VOn(x,) =0 <« x'= [ S0 ’“/2]] i=1,...,N

P (X € (Xilll/Z’Xilyk—l/Z])
N _ K (X,'IYH/Q) - Ky (X,'/L/z)
Fy (Xi,YH/Z) - FX(XIIXI/2)

)
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The price of the European option on the asset S7° is given by
Ib:=E [e_'T o(59)].
By preconditioning we have
b =E|E[e T w(SF) | o(w)]| = B[f(w)]

where f(v) is the price of the European option in the Standard Heston model
with deterministic initial conditions for a given initial volatility v.

T. Montes Optimal Quantization 12 / 31



The price of the European option on the asset S7° is given by
Ib:=E [e_rT o(59)].
By preconditioning we have
b =E|E[e T w(SF) | o(w)]| = B[f(w)]

where f(v) is the price of the European option in the Standard Heston model
with deterministic initial conditions for a given initial volatility v.

4
Cubature formula

e Build an optimal quantizer of vy ~ (v, 3)

e Approximate Iy using the following quantization-based cubature formula
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Quantization based Numerical Methodology For European Options pricing

e Fast convergence of Z)N toward ly, for smooth enough functions f

ylim N?|E[f(vo)] = E[f(T)]] < Coo,r < +00.

T. Montes Optimal Quantization 13 /31



Quantization based Numerical Methodology For European Options pricing

e Fast convergence of Z)N toward ly, for smooth enough functions f

ylim N?|E[f(vo)] = E[f(T)]] < Coo,r < +00.

e From European options (preconditioning by vy at time t) to
path-dependent ones (need to precondition by (vi)k=o:n at time t;'s).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Litterature

Recursive Quantization

e Recursive marginal quantization of the Euler scheme of a diffusion process by G.
Pagés and A. Sagna. (2015)

e Recursive Marginal Quantization of Higher-Order Schemes by J. Kienitz, T. A.
McWalter, E. Platen and R. Rudd. (2017)

o Product Markovian quantization of an RY-valued Euler scheme of a diffusion
process with applications to finance by L. Fiorin, G. Pagés and A. Sagna. (2018)

Previous work on Heston model using Quantization

e Pricing via Quantization in Stochastic Volatility Models by G. Callegaro, L.
Fiorin and M. Grasselli. (2016)

e Fast Quantization of Stochastic Volatility Models by J. Kienitz, T. A. McWalter,
E. Platen and R. Rudd. (2017)

e American quantized calibration in stochastic volatility by G. Callegaro, L. Fiorin
and M. Grasselli. (2018)

e And more... )
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Model transformation

dS;
dv;

vy is autonomous, hence 1d problem (again).

St (rdt + \/thWt>
k(0 — ve)dt + Ex/ved W,
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Model transformation

de = St (rdt + \/thWt>
dve = k(0 — vp)dt + £x/ved W,

vy is autonomous, hence 1d problem (again).

We will be working with (X:, Y;) that are transformation of (S, v¢) :
e For the volatility — Y; = e v,

e For the asset —> X; = log(5;)
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

Milstein Scheme (preserving the positivity)
We consider the following boosted volatility process: let Y; = e v,, t € [0, T].

dY: = " kOdt + £ \/YidW,.
Now, if we look at the Milstein discretization scheme of Y;

?thrl = Mé&(tk’ kaa ZkJrl)

where Z,1 ~ N(0,1) and

2
A 5(t,x) - aa;(t,x)> 55, (t, x)A 1
2 = x——" 1L A —
Mis(6x2) = x— oo oS + <b(t’x) 2 )T 2 VAT
with
Kt . fe%

b(t,x) 1= e k0, F(t,x) :=&/xez and  &.(t,x) =

2%
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset

Euler-Maruyama scheme

We consider the logarithm of the asset X; := log(5;), yielding
dX, = (r - g) dt + /vedW,.

Now, using an Euler-Maruyama scheme for the discretization of X;, we have
Xeerr = Ebo (tis Xees Yoo, Zis1)
{Vtm = ME (tk, Y Zirn)
where Zi11 ~ N(0,1) and Corr(Zei1, Zks1) = p and
Elﬁg(t,x,y, z) =x+ b(t,x,y)A + za(t,x,y)\/z

with
e—,‘il’ y

b(t,x,y) :=r— 5 and o(t,x,y) ==+/e""ty.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

First, the volatility

We build recursively the Markovian quantization tree (\A/k)ke[[omﬂ where \A’tkﬂ is
the Voronoi quantization of 57k+1 defined by

Yit1 = Mﬁg(% Yi, Zies1), Yoa = Projry. (Yk+1)

with F,’\L = {yk, ... ,y,’\‘,z} the optimal N-quantizer of \N/k+1 and
Zir1 ~N(0,1).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Then, the log-asset

Now, using the fact that (Y;); has already been quantized and the
Euler-Maruyama scheme of (X;):, we define the Markov quantized scheme

Xier1 = E8, (ti, Xis Yiey Zii1), Xiep1 = Projr ()?k+1>

with l‘ﬁl = {xk, ... ,x,’\‘,l} the optimal N;-quantizer of Xi,1 and
Zit1 ~ N(0,1).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Its price, at time tg, is given by

Vo= sup Ble (X, Ye) | Fy .

TE{ty, " ,tn}

Hence, we can define recursively the sequence of random variable LP-integrable
(Vk)Oékén :

V, = e %(Xn, Yn)a
Vie = max (e "™ ¢ (Xie, Yi), B[ Vi1 | i) 0<k<n-1

called Backward Dynamical Programming Principle.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options

Using the Product Recursive Quantizer

We approximate the Backward Dynamical Programming Principle by the
following sequence involving the couple (Xk, Yk)o<k<n:

\7n = eirtn djn()?n, ?n)a
\7k = max (efrtk ’(/)k()?k, \,}k),]E [\7;(_;,_1 | ()?k, ?k)]); k = ].7 e, N — 1
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Bermudan Options
Using the Product Recursive Quantizer
The last equation can be rewritten

f/\n(Xin7yjn) =e ™ d)n(Xinayjn)a i=1...,Ng, Jj= 1. Ny,

Ny N>
-~ k —rt, k k = k+1  k+1
Vk(xi 7yjn> = maXx (e e ¢k(X,' a.yjn)vz Z 7T(,’J)’(/,m)Vk+1(X[ ' Ym )) 5
I=1m=1

k:1,...,n—1, iZl,...,Nl, j:].,...,NQ.

with Wé(i’j)’(/’m) = P(Xyky1 = x,k+1, Yier =yt | Xe = xK, Vi = yjk).

Finally, the approximation of the price of the bermudan option is given by

N2 o
E [Vk(x0, Yo)] = . pivi(x0,¥7)
i-1

with p; := IP(\A/O = y?) previously defined.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

A Barrier option is a path-dependent financial product whose payoff at maturity
date T depends on the value of the process X7 at date T and its maximum or
minimum over the period [0, T]. More precisely, we are interested by options
with the following types of payoff h

h = f(XT) Lisup,cro.r) Xeel} or  h=f(XT) Linf,0. 1) Xecl)

where / is an unbounded interval of R, T is the maturity date and f can be any
vanilla payoff function (Call, Put, Spread, Butterfly, ...).
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

Using a representation formula

Now, using the representation formula based on the conditional law of the
Brownian Bridge for the price of up-and-out options Pyo and down-and-out
options Ppo

n—1
Pyo:=¢E [f(XT) Laiprcron thL] = E [f(XT) H G&kyk)xkﬂ(L)
k=0
where L is the barrier and

_2,,%&*1')
G(l;’y)’z(u) = (1 —e To2(tg,x,y) ) ﬂ{u?max(x,z)}

Equivalent formulas for other standard Barrier options.
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Quantization based Numerical Methodology For Bermudan and Barrier Options pricing

Barrier Options

Using the Product Recursive Quantizer

Finally, replacing (Xx, Yx) by ()A(k, \A/k) and using a recursive algorithm yield
Vo = e T £(X,),

Vi = [gk(ka Yies Xer1) Vi1 | (X, Yk)] 0<k<n-—1
that can be rewritten

Un(X ) =e T F(x), i=1,... Ny, j=1,.... N\,
Ny N>

k
Xi 7yJ E E ,_,) «, m)Vk-‘rl( 7yrl1(1+1)gk( Xi ay_/ » X +1)7
=1 m=1

k=1,...,n—1, i=1,...,Ny, j=1,...,N>

with 71';‘,.’]) (my = ()?k_,_l = X,kﬂ, ?k+1 = yktl | )A(k = x,.k, )’;k = ij) and
gk<x7.y7 ) G(,;y) ( )
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Conclusion

Conclusion

e Introduced a model with steeper smile volatility
surface for short maturities than Standard Heston
model.

e Fast numerical solution for the pricing of European,
Bermudan and Barrier options.

And more..

e Asian Options

e Calibration
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