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Motivation

Motivation

• De�ne a discrete random variable X̂N of cardinal N approaching X ,

• Allowing us to to approach E f (X ) by E f (X̂N)

E f (X̂N) =
N∑
i=1

f (xNi )P(X̂N = xNi ),

• Then study the error induced by this approximation: �nding the highest α
such that

lim
N→+∞

Nα|E f (X )− E f (X̂N)| ≤ Cf ,X < +∞.
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About Optimal Quantization (d = 1)

De�nitions

Let ΓN =
{
xN
1
, . . . , xNN

}
⊂ R, a subset of size N, called N-quantizer, we de�ne:

• The Voronoï partition of R induced by the N-quantizer:

∀i = {1, . . . ,N}, Ci (ΓN) ⊂
{
ξ ∈ R, |ξ − xNi | ≤ min

j 6=i
|ξ − xNj |

}
.

Easily de�ned in dimension one.

• The Voronoï Quantization of the random variable X :

X̂ ΓN = ProjΓN
(X ) =

N∑
i=1

xNi 1X∈Ci (ΓN )

• It is convenient to de�ne the quadratic distortion function at level N:

Q2,N : x =
(
xN
1
, . . . , xNN

)
7−→ E

(
min

i∈J1,NK
|X − xNi |2

)
= ‖X − X̂N‖2

2
.
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About Optimal Quantization (d = 1)

Existence

The optimal L2-mean quantization problem consists in minimizing the quadratic
distortion function over all grids Γ of size |Γ| ≤ N.

Theorem (Kie�er, Cuesta-Albertos, Pagès, Graf Luschgy)

For every N ≥ 1, there exists (at least) one quadratic Optimal Quantization
grid ΓN at level N and N 7→ infx∈(R)N Q2,N(x) converges to 0 and is decreasing
as long as it is positive.

De�nition

A grid associated to any N-tuple solution to the above distortion minimization
problem is called an optimal quadratic N-quantizer.
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About Optimal Quantization (d = 1)

Stationarity

A really interesting and useful property concerning quadratic optimal quantizers
is the stationarity property.

Proposition (Stationarity)

Assume that the support of P
X
has at least N elements. Any L2-optimal

N-quantizer ΓN ∈ (R)N is stationary in the following sense: for every Voronoï

quantization X̂N of X ,

E
(
X
∣∣X̂N

)
= X̂N .
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About Optimal Quantization (d = 1)

Asymptotic behavior in N of Q2,N(x)

Theorem (Zador's Theorem)

Let X ∈ L2+δ
R (P) for some δ > 0. Let P

X
(dξ) = ϕ(ξ) · λ(dξ) + ν(dξ), where

ν ⊥ λ i.e. is singular with respect to the Lebesgue measure λ on R. Then,
there is a constant J̃2,1 ∈ (0,+∞) such that

lim
N→+∞

N min
ΓN⊂R,|ΓN |≤N

‖X − X̂N‖
2

= J̃2,1

[∫
R

ϕ
1

3 dλ

]1+ 1

2

with J̃2,1 = 1

12
.

Theorem

Moreover

lim
N→+∞

N2E
[
g(X̂N)|X − X̂N |2

]
= Q2(P

X
)

∫
g(ξ)P

X
(dξ)

for every function g : R→ R such that E g(X ) < +∞.
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About Optimal Quantization (d = 1)

Local behavior of optimal quantizers

Theorem (Local behavior of optimal quantizers)

Let P
X
be a distribution on the real line with connected support supp(P

X
).

Assume that P
X
has a probability density function ϕ which is positive and

Lipschitz continuous on every compact set of the interior (m,M) of supp(P
X

).
For every [a, b] ⊂ (m,M), a < b,

(a) the weights are asymptotically uniformly distributed

sup
{i :xN

i ∈[a,b]}

∣∣∣N PX
(Ci (ΓN))− cϕ,r+1ϕ

2

3

(
xNi
)∣∣∣ N→+∞−−−−−→ 0,

(b) the local distortion is asymptotically uniformly distributed

sup
{i :xN

i ∈[a,b]}

∣∣∣∣∣N3

∫
Ci (ΓN )

∣∣xNi − ξ∣∣2PX
(dξ)−

‖ϕ‖1/3
12

∣∣∣∣∣ N→+∞−−−−−→ 0.

V. Lemaire, T. Montes and G. Pagès Optimal Quantization 8 / 45



About Optimal Quantization (d = 1)

Lr-Ls-distortion mismatch

Theorem (Lr -Ls -distortion mismatch)

Let X : (Ω,A,P)→ R be a random variable. Assume that the distribution P
X

of X has a non-zero absolutely continuous component with density ϕ. Let
(ΓN)N≥1 be a sequence of L2-optimal grids. Let s ∈ (2, 3). If

X ∈ L
s

3−s +δ(Ω,A,P)

for some δ > 0, then
lim sup

N
N‖X − X̂N‖s < +∞.
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Weak Error bounds for Optimal Quantization (d = 1)

What do we mean by weak error bounds for

optimal quantization?

Considering X , a random variable in dimension one and the quadratic optimal
quantizer at level N, X̂N of X , we are interested by the highest α in the
following quantity that keeps the limit upper-bounded

lim
N→+∞

Nα|E f (X )− E f (X̂N)| ≤ Cf ,X < +∞

for di�erent classes of functions.

V. Lemaire, T. Montes and G. Pagès Optimal Quantization 11 / 45



Weak Error bounds for Optimal Quantization (d = 1) Classical Results
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Weak Error bounds for Optimal Quantization (d = 1) Classical Results

Known results

• For Lipschitz functions: α = 1

N|E f (X )−E f (X̂N)| ≤ [f
Lip

]N‖X − X̂N‖
1
≤ N[f

Lip
]‖X − X̂N‖

2

N→+∞−−−−−→ Cf

using Zador's Theorem.

• For di�erentiable functions with Lipschitz derivative: α = 2 using the
following expansion for f

f (y) = f (x) + f ′(y)(y − x) +

∫
1

0

(f ′(ty + (1− t)x)− f ′(x))(y − x)dt.

• For di�erentiable functions with α′-Hölder derivative: α = 1 + α′.
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Weak Error bounds for Optimal Quantization (d = 1) New results

Piecewise a�ne functions

Lemma

Let f : R→ R a piecewise-de�ned a�ne function with �nitely many breaks of
a�nity.

(a) If f is continuous, then there exists a real constant Cf ,X > 0 such that

lim sup
N

N2

∣∣∣E f (X )− E f (X̂N)
∣∣∣ ≤ Cf ,X < +∞. (1)

(b) However, if f is not supposed continuous, then there exists a real constant
Cf ,X > 0 such that

lim sup
N

N
∣∣∣E f (X )− E f (X̂N)

∣∣∣ ≤ Cf ,X < +∞. (2)
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Weak Error bounds for Optimal Quantization (d = 1) New results

Lipschitz Convex functions

Representation formula of Lipschitz convex functions

Let I be any interval non trivial (6= ∅, {a}) with endpoints a, b ∈ R. Then,
there exists a unique �nite non-negative Borel measure ν := νf on I such that,

f (x) = f (c) + (x − c)f ′+(c) +

∫
[a,c)∩I

(u − x)+ν(du) +

∫
[c,b]∩I

(x − u)+ν(du).

Proposition

If supp(P
X

) ∩ supp(ν) is compact then there exists a real constant Cf ,X > 0
such that

lim sup
N

N2

∣∣∣E f (X )− E f (X̂N)
∣∣∣ ≤ Cf ,X < +∞.
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Weak Error bounds for Optimal Quantization (d = 1) New results

Lipschitz Convex functions

Proof.

E
[
f (X )− f (X̂N)

]
=

N∑
i=1

E

[(
f (X )− f (xNi )

)
1{X∈(xN

i−1/2,x
N
i+1/2

]}

]
.

Using the representation formula and noticing that

E
[(

X − xNi

)
f ′+

(
xNi

)
1{X∈Ci (ΓN )}

]
= 0,

we obtain

E

[(
f (X )− f (xNi )

)
1{X∈(xN

i−1/2,x
N
i+1/2

]}

]

= E

∫
(xN

i−1/2,x
N
i )

(u − X )+ν(du)1{X∈(xN
i−1/2,x

N
i ]}


+ E

∫
[xNi ,x

N
i+1/2

)
(X − u)+ν(du)1{X∈[xNi ,x

N
i+1/2

]}

 .
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Weak Error bounds for Optimal Quantization (d = 1) New results

Lipschitz Convex functions

Proof (Cont.)

Now, using a crude upper-bound, we get

E

[(
f (X )− f (xNi )

)
1{X∈(xN

i−1/2,x
N
i+1/2

]}

]

≤ E

[(
xNi − X

)
ν((xNi−1/2, x

N
i )) 1{X∈(xN

i−1/2,x
N
i

]}

]
+ E

[
(X − xNi )ν([xNi , x

N
i+1/2)) 1{X∈[xN

i
,xN
i+1/2

]}

]

≤ E
[
|xNi − X | 1{X∈Ci (ΓN )}

]
ν(Ci (ΓN ))

Hence

0 ≤ E
[
f (X )− f (X̂N )

]
≤

N∑
i=1

E
[
|xNi − X | 1{X∈Ci (ΓN )}

]
ν(Ci (ΓN ))

≤
N∑
i=1

E
[
|xNi − X | 1{X∈Ci (ΓN )}

]
1{xN

i
∈Jν}

ν(Ci (ΓN ))

with Jν :=
[

infN xNia−1/2, supN xNib+1/2

]
. Hence

N2
E
[
f (X )− f (X̂N )

]
≤ ν(IP

X
)N2 sup

i :xN
i
∈supp(P

X
)∩Jν

E
[
|X̂N − X | 1{X∈Ci (ΓN )}

]
N→+∞−−−−−−→ Cf ,X < +∞.
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Weak Error bounds for Optimal Quantization (d = 1) New results

Piecewise-de�ned Di�erentiable functions

De�nitions

A function f : I → R is supposed to be locally-Lipschitz continuous, if

∀x , y ∈ I |f (x)− f (y)| ≤ [f ]
Lip,loc
|x − y |(c + g(x) + g(y))

where [f ]
Lip,loc

is a real constant and g : R→ R+.

A function f : I → R is supposed to be locally α-Hölder continuous, if

∀x , y ∈ I |f (x)− f (y)| ≤ [f ]
α,loc
|x − y |α(c + g(x) + g(y))

where [f ]
α,loc

is a real constant and g : R→ R+.
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Weak Error bounds for Optimal Quantization (d = 1) New results

Piecewise-de�ned Di�erentiable functions

Proposition

If f : R→ R is a piecewise-de�ned continuous function with �nitely many
breaks of a�nity {a1, . . . , aK}, where
−∞ = a0 < a1 < · · · < aK < aK+1 = +∞, such that the piecewise-de�ned
derivatives denoted (f ′k )k=0,...,d are

(a) locally-Lipschitz continuous on (ak , ak+1) where ∃qk ≥ 1 such that the
qk -th power of gk : (ak , ak+1)→ R+ are convex and
(‖gk(X )‖qk )k=1,K < +∞. Then there exists a real constant Cf ,X > 0 such
that

lim sup
N

N2

∣∣∣E f (X )− E f (X̂N)
∣∣∣ ≤ Cf ,X < +∞.

(b) locally α-Hölder continuous on (ak , ak+1), α ∈ (0, 1) such that the qk -th
power of gk : (ak , ak+1)→ R+ are convex and (‖gk(X )‖qk )k=1,K < +∞.
Then there exists a real constant Cf ,X > 0 such that

lim sup
N

N1+α
∣∣∣E f (X )− E f (X̂N)

∣∣∣ ≤ Cf ,X < +∞.
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Weak Error bounds for Optimal Quantization (d = 1) New results

Piecewise-de�ned Di�erentiable functions

Ideas in the proof

• Divide the sum of the integral of the di�erence in two parts: one where
the cells contains a break of a�nity and the other part where there is not:

E f (X̂N)−E f (X ) =
∑
i∈INreg

∫
Ci (ΓN )

f (xNi )−f (ξ)PX (dξ)+
∑
i /∈INreg

∫
Ci (ΓN )

f (xNi )−f (ξ)PX (dξ)

• Taking care of the second term in the standard way (Taylor expansion,
crude upper-bound, Zador's Theorem and Lr -Ls -distortion mismatch
Theorem).

• Now the �rst term: �nite number of terms in the sum, integral
representation of f with f ′ bounded, hence

∣∣∣∣∣
∫
Ci (ΓN )

f (xNi )− f (ξ)P
X

(dξ)

∣∣∣∣∣ =

∣∣∣∣∣
∫
Ci (ΓN )

∫ xNi

ξ
f ′(u)du P

X
(dξ)

∣∣∣∣∣ ≤ [f ′ |
K0

]
Lip

∫
Ci (ΓN )

|ξ − xNi |PX
(dξ) .

Summing among the term and using the Theorem dealing with the local
behavior gives use the result.
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Richardson-Romberg Extrapolation In dimension 1
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Richardson-Romberg Extrapolation In dimension 1

Proposition (Weak-Error expansion)

Let f : R→ R be a twice di�erentiable function with Lipschitz second
derivative. Then, ∀β ∈ (0, 1), we have the following expansion

E f (X ) = E f (X̂N) +
c2
N2

+ O
(
N−(2+β)

)
.

Moreover, if ϕ : [a, b]→ R+ is a Lipschitz continuous probability density
function, bounded away from 0 on [a, b] then we can choose β = 1, yielding

E f (X ) = E f (X̂N) +
c2
N2

+ O
(
N−3

)
.

Richardson-Romberg extrapolation

Combine X̂N of size N and X̂M of size M, with M > N in order to kill the
residual term, leading

E f (X ) = E

(
M2f (X̂M)− N2f (X̂N)

M2 − N2

)
+ O

(
N−(2+β)

)
. (3)
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Richardson-Romberg Extrapolation A �rst extension in higher dimension
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Richardson-Romberg Extrapolation A �rst extension in higher dimension

Proposition (Weak-Error expansion for product optimal quantizer)

Let f : Rd → R be a twice di�erentiable function with bounded Hessian. Let
X : (Ω,A,P)→ Rd be a random vector with independent components

(Xk)k=1,...,d . For every (Nk)k=1,...,d ≥ 1, let (X̂Nd

d )k=1,...,d be quadratic optimal
quantizers of (Xk)k=1,...,d taking values in the grids (ΓNk

)k=1,...,d respectively

and we de�ne X̂N as the product quantizer X taking values in the �nite grid
ΓN :=

⊗
k=1,...,d ΓNd

of size N := N1 × · · · × Nd . Then, we have the following
expansion

E f (X ) = E f (X̂N) +
d∑

k=1

ck
N2

k

+ O
(
N
−(2+β)
1

∨ · · · ∨ N
−(2+β)
d

)
.
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Applications Quantized Control Variates in Monte Carlo simulations
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Applications Quantized Control Variates in Monte Carlo simulations

Our quantity of interest

I := E f (Z ).

with Z ∈ L2
Rd (Ω,A,P) a random vector with components (Zk)k=1,...,d and

f : Rd → R our function of interest.

d dimensional Quantized Control Variate ΞN

ΞN :=
(
ΞN
k

)
k=1,...,d

where each component ΞN
k is de�ned by

ΞN
k := fk(Zk)− E fk(ẐN

k ),

with fk(z) := f (EZ1, . . . , z , . . . ,EZd) and ẐN
k is an optimal quantizer of

cardinal N of the component Zk .
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Applications Quantized Control Variates in Monte Carlo simulations

Controlled approximation IN of I

IN = E
(
f (Z )− 〈λ,ΞN〉

)
= E

(
f (Z )−

d∑
k=1

λk fk(Zk)

)
+

d∑
k=1

λk E fk(ẐN
k ).

Remark (Optimal λk 's)

We can �nd easily the λk 's minimizing the variance of Xλ

Var(Xλmin ) = min{Var(f (Z )− 〈λ,ΞN〉), λ ∈ Rd}.

The solution of the above optimization problem is the solution to the system
D(Z ) · λ = B where D(Z ), the covariance-variance matrix of (fk(Zk))k=1,...,d ,
and B are given by

D(Z) =

 Var(f1(Z1)) · · · Cov(f1(Z1), fd (Zd ))
...

. . .
...

Cov(fd (Zd ), f1(Z1)) · · · Var(fd (Zd ))

 , B =

Cov(f (Z), f1(Z1))
...

Cov(f (Z), fd (Zd ))

 .
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k ).

Remark (Optimal λk 's)

We can �nd easily the λk 's minimizing the variance of Xλ

Var(Xλmin ) = min{Var(f (Z )− 〈λ,ΞN〉), λ ∈ Rd}.

The solution of the above optimization problem is the solution to the system
D(Z ) · λ = B where D(Z ), the covariance-variance matrix of (fk(Zk))k=1,...,d ,
and B are given by

D(Z) =

 Var(f1(Z1)) · · · Cov(f1(Z1), fd (Zd ))
...

. . .
...

Cov(fd (Zd ), f1(Z1)) · · · Var(fd (Zd ))

 , B =

Cov(f (Z), f1(Z1))
...

Cov(f (Z), fd (Zd ))

 .

V. Lemaire, T. Montes and G. Pagès Optimal Quantization 30 / 45



Applications Quantized Control Variates in Monte Carlo simulations

Monte Carlo estimator of Iλ,N

Îλ,N
M

=
1

M

M∑
m=1

(
f (Zm)−

d∑
k=1

λk fk(Zm
k )

)
+

d∑
k=1

λk E fk(ẐN
k ).

Remark (Biased estimator)

The quantity we are really interested by is not the bias but the MSE (Mean
Square Error), yielding a bias-variance decomposition

MSE(Îλ,N
M

) =

(
d∑

k=1

λk(E fk(Ẑ
N
k )−E fk(Zk))

)2

︸ ︷︷ ︸
bias2

+
1

M
Var

(
f (Z)−

d∑
k=1

λk fk(Zk)

)
︸ ︷︷ ︸

Monte Carlo variance

.
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Monte Carlo estimator of Iλ,N

Îλ,N
M

=
1

M

M∑
m=1

(
f (Zm)−

d∑
k=1

λk fk(Zm
k )

)
+

d∑
k=1

λk E fk(ẐN
k ).

Remark (Biased estimator)

The quantity we are really interested by is not the bias but the MSE (Mean
Square Error), yielding a bias-variance decomposition

MSE(Îλ,N
M

) =

(
d∑

k=1

λk(E fk(Ẑ
N
k )−E fk(Zk))

)2

︸ ︷︷ ︸
bias2

+
1

M
Var

(
f (Z)−

d∑
k=1

λk fk(Zk)

)
︸ ︷︷ ︸

Monte Carlo variance

.
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Minimizing the cost of the Monte Carlo estimator

Our aim is to minimize the cost of the Monte Carlo simulation for a given MSE
or upper-bound of the MSE.

inf
MSE(Îλ,NM )≤ε2

Cost(Îλ,N
M

).

Let κ = Cost(f (z)) for a given z ∈ Rd . The global complexity associated to

the estimator Îλ,N
M

is given by

Cost(Îλ,N
M

) = κ((d + 1)M + dN)

and if each fk is in a class of function where the weak error of order two is
reached when using a quantization-based cubature formula then our
minimization problem becomes

inf
C
N4

+
σ2
λ
M ≤ε2

κ((d + 1)M + dN).
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Vanilla options B&S

Payo� of a Call

(ST − K )+

with price

I0 := E
(
e−rT (ST − K )+

)
= Call

BS
(S0,K , r , σ,T ) = S0N (d1)− K e−rT N (d2).

Approximation of E
(
e−rT (ST − K )+

)
using Optimal Quantization

• First, we rewrite the expectation in function of Z a normal distributed
random variable

E
(
e−rT (ST − K )+

)
= E f (Z )

where f (x) := e−rT
(
s0 e(r−σ2/2)T+σ

√
Tx −K

)
+
.

• Second, we have

E
(
e−rT (ST − K )+

)
= E g(ST )

where g(x) := e−rT (x − K )+.
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Parameters

s0 = 100, r = 0.1, σ = 0.5, T = 1, K = 80.

The reference value is 34.15007.

(a) N 7−→ |I0 −E f (ẐN)| (t) and

N 7−→ |I0 −E g(X̂N)| (l)

(b) N 7−→ N2 × |I0 −E f (ẐN)| (t) and

N 7−→ N2 × |I0 −E g(X̂N)| (l)

Figure: Call option in a Black-Scholes model.
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Compound Option B&S

Payo� of a Put-on-Call(
K1 − E

[
e−r(T2−T1)(ST2

− K2)+ | ST1

])
+

with price

I0 := E

(
e−rT1

(
K1 − E

[
e−r(T2−T1)(ST2

− K2)+ | ST1

])
+

)
= E

[
e−rT1 (K1 − Call

BS
(ST1

,K2, r , σ,T2 − T1))+

]
Approximation of I0 using Optimal Quantization

• First, I0 = E f (Z ) where Z ∼ N (0; 1) and

f (Z ) = e−rT1(K1 − Call
BS

(s0 e(r−σ2/2)T+σ
√
TZ ,K2, r , σ,T2 − T1))+.

• Second, I0 = E g(X ) where log(X ) ∼ N ((r − σ2/2)T ;σ
√
T ) and

g(X ) = e−rT1(K1 − Call
BS

(s0X ,K2, r , σ,T2 − T1))+.
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Parameters

s0 = 100, r = 0.03, σ = 0.2,T1 =
1

12
,T2 =

1

2
,K1 = 6.5,K2 = 100.

The reference value is 1.3945704.

(a) N 7−→ |I0 −E f (ẐN)| (t) and

N 7−→ |I0 −E g(X̂N)| (l)

(b) N 7−→ N2 × |I0 −E f (ẐN)| (t) and

N 7−→ N2 × |I0 −E g(X̂N)| (l)

Figure: Put-On-Call option in a Black-Scholes model.
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Exchange spread Option B&S

Exchange spread Option (
S1

T − S2

T − K
)

+

with price

I0 := E
(

e−rT
(
S1T − S2T − K

)
+

)
= E

[
CallBS

(
s10 e−ρ

2σ2
1
T/2+σ1ρ

√
TZ2 , s20 e(r−σ2

2
/2)T+σ2

√
TZ2 +K , r , σ1

√
1− ρ2,T

)]
where Z2 ∼ N (0, 1).
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Parameters

s i
0

= 100, r = 0.02, σi = 0.5, ρ = 0.5, T = 10, K = 10.

The reference value is 53.552678.

(a) N 7−→ |I0 −E g(ẐN)| (t) (b) N 7−→ N2 × |I0 −E g(ẐN)| (t)

Figure: Exchange spread option pricing in a Black-Scholes model.
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Remark

Noticing that g(z) is a twice di�erentiable function with bounded second derivative, we can

reach a weak error of order 3 when using a Richardson-Romberg extrapolation denoted ÎRRM,N

and de�ned by

ÎRRM,N := E

(
M2g(ẐM)− N2g(ẐN)

M2 − N2

)
.

For the next �gure, we chose M := k × N with k = 1.2.

(a) N 7−→ |I0 − ÎRRM,N | (t) (b) N 7−→ N3 × |I0 − ÎRRM,N | (t)

Figure: Richardson-Romberg extrapolation, for Exchange spread option in a B&S model.
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Basket Option B&S

Payo� of a Basket

f (S1t , . . . ,S
d
T ) :=

(
d∑

k=1

αkS
k
T − K

)
+

with price I0 := e−rT E

(
d∑

k=1

αkS
k
T − K

)
+

.

Approximation of I0 using a Monte Carlo estimator

• First, the Crude Monte Carlo estimator

ÎM := e−rT 1

M

M∑
m=1

(
d∑

k=1

αkS
k,(m)
T − K

)
+

.

• Second, the controlled Monte Carlo estimator

Îλ,NM := e−rT 1

M

M∑
m=1

(
d∑

k=1

αkS
k,(m)
T − K

)
+

− 〈λ,ΞN,(m)〉.
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Two possible control variates

• First, we consider

Ξ
N
k := f (E S1T , · · · ,S

k
T , · · · ,E Sd

T )− E f (E S1T , · · · , Ŝ
k,N
T , · · · ,E Sd

T ).

In that case, the Monte Carlo estimator is denoted Î
λ,N

M .

• Second, we consider

Ξ̃N
k := g(0, · · · ,Z k , · · · , 0)− E g(0, · · · , ẐN , · · · , 0)

where (Z k )k=1,...,d are i.i.d Gaussian random variables and (ẐN)k=1,...,d is an optimal

quantizer of Z ∼ N (0, 1). In that case, the Monte Carlo estimator is denoted
̂̃
I
λ,N

M .
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Parameters

s i
0

= 100, r = 2%, σi = i/(d + 1), ρ = 0.5

and the speci�cations of the product are

K = 100, αi = 2i/(d(d + 1))

N = 20 N = 200
d MC Estimator Mean (±1.96×std) MSE Mean (±1.96×std) MSE

d = 2
Crude 14.2695 (±0.0662) 0.1450 14.2695 (±0.0662) 0.1450
CV Gaussian 14.1017 (±0.0399) 0.0774 14.2773 (±0.0399) 0.0530
CV Log-Normal 14.2351 (±0.0078) 0.0026 14.2614 (±0.0078) 0.0020

d = 3
Crude MC 14.1770 (±0.0671) 0.1492 14.1770 (±0.0671) 0.1492
CV Gaussian 14.0336 (±0.0451) 0.0837 14.1685 (±0.0451) 0.0673
CV Log-Normal 14.1479 (±0.0104) 0.0038 14.1674 (±0.0104) 0.0036

d = 5
Crude MC 13.8803 (±0.0720) 0.1717 13.8803 (±0.0720) 0.1717
CV Gaussian 13.6686 (±0.0562) 0.1580 13.8883 (±0.0562) 0.1044
CV Log-Normal 13.8797 (±0.0151) 0.0080 13.9008 (±0.0151) 0.0076

d = 10
Crude MC 13.5046 (±0.0599) 0.1186 13.5046 (±0.0599) 0.1186
CV Gaussian 13.2429 (±0.0515) 0.1527 13.5113 (±0.0515) 0.0878
CV Log-Normal 13.4221 (±0.0194) 0.0181 13.4983 (±0.0194) 0.0124
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(a) N 7−→ |I0 − Î
λ,N

M | (t), N 7−→ |I0 −
̂̃
I
λ,N

M |
(l) and the Crude Monte Carlo estimator (n)
with their associated con�dence interval at
95%.

(b) N 7−→ MSE(ÎM) (n), N 7−→ MSE (̂I
λ,N

M )

(t) and N 7−→ MSE (̂Ĩ
λ,N

M ) (l).

Figure: n = 128, M = 1e4.
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